The Simultaneous Local Metric Dimension of Graph Families

被引:4
作者
Barragan-Ramirez, Gabriel A. [1 ]
Estrada-Moreno, Alejandro [1 ]
Ramirez-Cruz, Yunior [2 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
[2] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, 6 Av Fonte, L-4364 Esch Sur Alzette, Luxembourg
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
local metric dimension; simultaneity; corona product; lexicographic product; complexity; LEXICOGRAPHIC PRODUCT;
D O I
10.3390/sym9080132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a graph G = (V, E), a vertex v is an element of V is said to distinguish two vertices x and y if d(G) (v, x) 6 not equal d(G) (v, y). A set S subset of V is said to be a local metric generator for G if any pair of adjacent vertices of G is distinguished by some element of S. A minimum local metric generator is called a local metric basis and its cardinality the local metric dimension of G. A set S subset of V is said to be a simultaneous local metric generator for a graph family G = {G(1), G(2),...,G(k)}, defined on a common vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous local metric dimension of G. We study the properties of simultaneous local metric generators and bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several graph families and analyze the complexity of computing this parameter.
引用
收藏
页数:22
相关论文
共 29 条
[1]  
[Anonymous], 1953, Theory and Applications of Distance Geometry
[2]  
Bailey RF, 2011, DISCRETE MATH THEOR, V13, P97
[3]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[4]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[5]   On the metric dimension of bilinear forms graphs [J].
Feng, Min ;
Wang, Kaishun .
DISCRETE MATHEMATICS, 2012, 312 (06) :1266-1268
[6]  
Fernau H., ARXIV13092275
[7]  
Fernau H., 2014, NOTIONS METRIC DIMEN, P153, DOI [10.1007/978-3-319-06686-8_12, DOI 10.1007/978-3-319-06686-8_12]
[8]   Metric dimension of some distance-regular graphs [J].
Guo, Jun ;
Wang, Kaishun ;
Li, Fenggao .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) :190-197
[9]  
Hammack R., 2011, Hand Book of Product Graphs
[10]  
Harary F., 1976, ARS COMBINATORIA, V2, P191, DOI DOI 10.1016/J.DAM.2012.10.018