Stability of singular solutions to the Navier-Stokes system

被引:5
作者
Cannone, Marco [1 ]
Karch, Grzegorz [2 ]
Pilarczyk, Dominika [3 ]
Wu, Gang [4 ]
机构
[1] Univ Gustave Eiffel, Lab Anal & Math Appl, 5 Blvd Descartes, F-77420 Champs Sur Marne, Marne, France
[2] Univ Wroclawski, Inst Matematyczny, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[3] Wydzial Matemat, Politech Wroclawska, Wybrzeze Wyspianskiego 37, Wroclaw, Poland
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equation; Cauchy problem; Stationary solutions; Singular solutions; Asymptotic behavior of  solutions; STEADY-STATE SOLUTIONS; HOMOGENEOUS SOLUTIONS; EXTERNAL FORCES; ASYMPTOTIC-BEHAVIOR; FINITE-ENERGY; LP-SOLUTIONS; EQUATIONS; STATIONARY; EXISTENCE; SPACES;
D O I
10.1016/j.jde.2022.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop mathematical methods which allow us to study asymptotic properties of solutions to the three dimensional Navier-Stokes system for incompressible fluid in the whole three dimensional space. We deal either with the Cauchy problem or with the stationary problem where solutions may be singular due to singular external forces which are either singular finite measures or more general tempered distributions with bounded Fourier transforms. We present results on asymptotic properties of such solutions either for large values of the space variables (so called the far-field asymptotics) or for large values of time. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:316 / 339
页数:24
相关论文
共 54 条
[1]  
[Anonymous], 2009, ARXIV09014286MATHAP
[2]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[3]  
Bae H.-O., 2009, Ann. Univ. Ferrara Sez. VII Sci. Mat., V55, P225
[4]   Asymptotic behavior for the Navier-Stokes equations with nonzero external forces [J].
Bae, Hyeong-Ohk ;
Brandolese, Lorenzo ;
Jin, Bum Ja .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E292-E302
[5]  
Batchelor D., 2000, Chromophobia
[6]   Lp-Solutions of the Steady-State Navier-Stokes Equations with Rough External Forces [J].
Bjorland, Clayton ;
Brandolese, Lorenzo ;
Iftimie, Dragos ;
Schonbek, Maria E. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) :216-246
[7]   Existence and stability of steady-state solutions with finite energy for the Navier-Stokes equation in the whole space [J].
Bjorland, Clayton ;
Schonbek, Maria E. .
NONLINEARITY, 2009, 22 (07) :1615-1637
[8]   On the instantaneous spreading for the Navier-Stokes system in the whole space [J].
Brandolese, L ;
Meyer, Y .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :273-285
[9]   New asymptotic profiles of nonstationary solutions of the Navier-Stokes system [J].
Brandolese, Lorenzo ;
Vigneron, Francois .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (01) :64-86
[10]   Fine Properties of Self-Similar Solutions of the Navier-Stokes Equations [J].
Brandolese, Lorenzo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (03) :375-401