On the equation 1k+2k + ••• + xk = yn for fixed x

被引:5
作者
Berczes, A. [1 ]
Hajdu, L. [1 ]
Miyazaki, T. [2 ]
Pink, I. [1 ,3 ]
机构
[1] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
[2] Gunma Univ, Fac Sci & Engn, Gunma 3768515, Japan
[3] Salzburg Univ, Hellbrunnerstr 34-1, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Power sums; Powers; Schaffer's conjecture; VALUES;
D O I
10.1016/j.jnt.2015.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide all solutions of the title equation in positive integers x, k, y, n with 1 <= x < 25 and n >= 3. For these values of the parameters, our result gives an affirmative answer to a related, classical conjecture of Schaffer. In our proofs we combine several tools: Baker's method (in particular, sharp bounds for the linear combinations of logarithms of two algebraic numbers), polynomial-exponential congruences and computational methods. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 60
页数:18
相关论文
共 17 条
[1]   On the Diophantine equation 1k+2k +...+ xk = yn [J].
Bennett, MA ;
Gyory, K ;
Pintér, A .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1417-1431
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   Equal values of standard counting polynomials [J].
Gyoery, Kalman ;
Kovacs, Tunde ;
Peter, Gyoengyver ;
Pinter, Akos .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2) :259-277
[4]  
Györy K, 2003, PUBL MATH-DEBRECEN, V62, P403
[5]  
Gyory K., 1980, ACTA ARITH, V37, P234
[6]   On a conjecture of Schaffer concerning the equation 1k + ... + xk = yn [J].
Hajdu, L. .
JOURNAL OF NUMBER THEORY, 2015, 155 :129-138
[7]   A computational approach for solving y2=1k+2k+•••+xk [J].
Jacobson, MJ ;
Pintér, A ;
Walsh, PG .
MATHEMATICS OF COMPUTATION, 2003, 72 (244) :2099-2110
[8]   Linear forms in two logarithms and interpolation determinants II [J].
Laurent, Michel .
ACTA ARITHMETICA, 2008, 133 (04) :325-348
[9]  
Lucas E., 1875, NOUVELLES ANN MATH, V14, P336
[10]  
Lucas E., 1877, NOUVELLES ANN MATH, V16, P429