Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces

被引:37
作者
Sajadinia, Seyed Hosein [1 ]
Sharif, Farhad [1 ]
机构
[1] Amir Kabir Univ Technol, Dept Polymer Engn, Tehran, Iran
关键词
Wettability; Superhydrophobicity; Dual roughness; Hierarchical structure; Thermodynamic analysis; CONTACT-ANGLE HYSTERESIS; ROUGH SURFACES; WATER DROPLETS; SUPERHYDROPHOBIC STATES; HIERARCHICAL STRUCTURES; LENGTH SCALES; LOTUS; WETTABILITY; TRANSITION; TOPOGRAPHY;
D O I
10.1016/j.jcis.2009.12.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nature-made superhydrophobic surfaces, such as lotus leaves, have a dual scale roughness (in micro and nanoscales) which is the main reason for their unique wettability. While there are a lot of experimental studies on wettability of hierarchical roughness, there is a lack of a thorough analysis of the contribution of micro and nanoscale roughness on wettability behavior despite interesting features these surfaces have. In this paper, a thermodynamic approach has been used to predict the wetting behavior of water droplet on a dual scale roughness. The predictions made by the model are compared with experimental results reported in the literature. The thermodynamic analysis has also been used to provide an insight into the origin of the special hydrophobicity of surfaces with dual scale roughness. It was found that there is an interaction between micro and nanoscale roughness on wettability of each other which results in a synergy among the components of roughness in enhancing hydrophobicity. All possible wetting states of a surface with dual scale roughness were presented in a wetting map. The contact angle for each state was also calculated to determine the maximum water repellency condition. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:575 / 583
页数:9
相关论文
共 39 条
[1]   Adhesive force of a single gecko foot-hair [J].
Autumn, K ;
Liang, YA ;
Hsieh, ST ;
Zesch, W ;
Chan, WP ;
Kenny, TW ;
Fearing, R ;
Full, RJ .
NATURE, 2000, 405 (6787) :681-+
[2]   Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles [J].
Barbieri, Laura ;
Wagner, Estelle ;
Hoffmann, Patrik .
LANGMUIR, 2007, 23 (04) :1723-1734
[3]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[4]   Nanostructures for superhydrophobicity and low adhesion [J].
Bhushan, Bharat ;
Koch, Kerstin ;
Jung, Yong Chae .
SOFT MATTER, 2008, 4 (09) :1799-1804
[5]   Wetting study of patterned surfaces for superhydrophobicity [J].
Bhushan, Bharat ;
Jung, Yong Chae .
ULTRAMICROSCOPY, 2007, 107 (10-11) :1033-1041
[6]   Lotus-Like Biomimetic Hierarchical Structures Developed by the Self-Assembly of Tubular Plant Waxes [J].
Bhushan, Bharat ;
Jung, Yong Chae ;
Niemietz, Adrian ;
Koch, Kerstin .
LANGMUIR, 2009, 25 (03) :1659-1666
[7]   Pearl drops [J].
Bico, J ;
Marzolin, C ;
Quéré, D .
EUROPHYSICS LETTERS, 1999, 47 (02) :220-226
[8]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[9]   Criteria for ultralyophobic surfaces [J].
Extrand, CW .
LANGMUIR, 2004, 20 (12) :5013-5018
[10]   Super-hydrophobic surfaces: From natural to artificial [J].
Feng, L ;
Li, SH ;
Li, YS ;
Li, HJ ;
Zhang, LJ ;
Zhai, J ;
Song, YL ;
Liu, BQ ;
Jiang, L ;
Zhu, DB .
ADVANCED MATERIALS, 2002, 14 (24) :1857-1860