Extracting consistent knowledge from highly inconsistent cancer gene data sources

被引:43
作者
Gong, Xue [1 ]
Wu, Ruihong [1 ]
Zhang, Yuannv [1 ]
Zhao, Wenyuan [1 ]
Cheng, Lixin [1 ]
Gu, Yunyan [1 ]
Zhang, Lin [2 ]
Wang, Jing [2 ]
Zhu, Jing [2 ]
Guo, Zheng [1 ,2 ]
机构
[1] Harbin Med Univ, Coll Bioinformat Sci & Technol, Harbin 150086, Peoples R China
[2] Univ Elect Sci & Technol China, Bioinformat Ctr, Sch Life Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFERENTIAL EXPRESSION DISCOVERIES; PROTEIN FUNCTION; HUMAN BREAST; MUTATIONS; DISEASE; PATHWAYS; GENOME; REPRODUCIBILITY; MECHANISMS; MICROARRAY;
D O I
10.1186/1471-2105-11-76
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Hundreds of genes that are causally implicated in oncogenesis have been found and collected in various databases. For efficient application of these abundant but diverse data sources, it is of fundamental importance to evaluate their consistency. Results: First, we showed that the lists of cancer genes from some major data sources were highly inconsistent in terms of overlapping genes. In particular, most cancer genes accumulated in previous small-scale studies could not be rediscovered in current high-throughput genome screening studies. Then, based on a metric proposed in this study, we showed that most cancer gene lists from different data sources were highly functionally consistent. Finally, we extracted functionally consistent cancer genes from various data sources and collected them in our database F-Census. Conclusions: Although they have very low gene overlapping, most cancer gene data sources are highly consistent at the functional level, which indicates that they can separately capture partial genes in a few key pathways associated with cancer. Our results suggest that the sample sizes currently used for cancer studies might be inadequate for consistently capturing individual cancer genes, but could be sufficient for finding a number of cancer genes that could represent functionally most cancer genes. The F-Census database provides biologists with a useful tool for browsing and extracting functionally consistent cancer genes from various data sources.
引用
收藏
页数:8
相关论文
共 53 条
[1]   RTCGD: retroviral tagged cancer gene database [J].
Akagi, K ;
Suzuki, T ;
Stephens, RM ;
Jenkins, NA ;
Copeland, NG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D523-D527
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   The Breast Cancer Gene Database: a collaborative information resource [J].
Baasiri, RA ;
Glasser, SR ;
Steffen, DL ;
Wheeler, DA .
ONCOGENE, 1999, 18 (56) :7958-7965
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis [J].
Chan, Timothy A. ;
Glockner, Sabine ;
Yi, Joo Mi ;
Chen, Wei ;
Van Neste, Leander ;
Cope, Leslie ;
Herman, James G. ;
Velculescu, Victor ;
Schuebel, Kornel E. ;
Ahuja, Nita ;
Baylin, Stephen B. .
PLOS MEDICINE, 2008, 5 (05) :823-838
[6]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[7]   An efficient strategy for extensive integration of diverse biological data for protein function prediction [J].
Chua, Hon Nian ;
Sung, Wing-Kin ;
Wong, Limsoon .
BIOINFORMATICS, 2007, 23 (24) :3364-3373
[8]   Using indirect protein interactions for the prediction of Gene Ontology functions [J].
Chua, Hon Nian ;
Sung, Wing-Kin ;
Wong, Limsoon .
BMC BIOINFORMATICS, 2007, 8 (Suppl 4)
[9]   Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions [J].
Chua, Hon Nian ;
Sung, Wing-Kin ;
Wong, Limsoon .
BIOINFORMATICS, 2006, 22 (13) :1623-1630
[10]   Somatic mutations affect key pathways in lung adenocarcinoma [J].
Ding, Li ;
Getz, Gad ;
Wheeler, David A. ;
Mardis, Elaine R. ;
McLellan, Michael D. ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Greulich, Heidi ;
Muzny, Donna M. ;
Morgan, Margaret B. ;
Fulton, Lucinda ;
Fulton, Robert S. ;
Zhang, Qunyuan ;
Wendl, Michael C. ;
Lawrence, Michael S. ;
Larson, David E. ;
Chen, Ken ;
Dooling, David J. ;
Sabo, Aniko ;
Hawes, Alicia C. ;
Shen, Hua ;
Jhangiani, Shalini N. ;
Lewis, Lora R. ;
Hall, Otis ;
Zhu, Yiming ;
Mathew, Tittu ;
Ren, Yanru ;
Yao, Jiqiang ;
Scherer, Steven E. ;
Clerc, Kerstin ;
Metcalf, Ginger A. ;
Ng, Brian ;
Milosavljevic, Aleksandar ;
Gonzalez-Garay, Manuel L. ;
Osborne, John R. ;
Meyer, Rick ;
Shi, Xiaoqi ;
Tang, Yuzhu ;
Koboldt, Daniel C. ;
Lin, Ling ;
Abbott, Rachel ;
Miner, Tracie L. ;
Pohl, Craig ;
Fewell, Ginger ;
Haipek, Carrie ;
Schmidt, Heather ;
Dunford-Shore, Brian H. ;
Kraja, Aldi ;
Crosby, Seth D. ;
Sawyer, Christopher S. .
NATURE, 2008, 455 (7216) :1069-1075