A Deep Learning Approach to Diagnosing Multiple Sclerosis from Smartphone Data

被引:24
作者
Schwab, Patrick [1 ]
Karlen, Walter [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Mobile Hlth Syst Lab, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Marine vehicles; Cranes; Mathematical model; Parallel machines; Job shop scheduling; Resource management; Safety; Artificial neural networks; digital biomarkers; medical diagnosis; multiple sclerosis; explainability; DISABILITY; TIME; MRI;
D O I
10.1109/JBHI.2020.3021143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple sclerosis (MS) affects the central nervous system with a wide range of symptoms. MS can, for example, cause pain, changes in mood and fatigue, and may impair a person's movement, speech and visual functions. Diagnosis of MS typically involves a combination of complex clinical assessments and tests to rule out other diseases with similar symptoms. New technologies, such as smartphone monitoring in free-living conditions, could potentially aid in objectively assessing the symptoms of MS by quantifying symptom presence and intensity over long periods of time. Here, we present a deep-learning approach to diagnosing MS from smartphone-derived digital biomarkers that uses a novel combination of a multilayer perceptron with neural soft attention to improve learning of patterns in long-term smartphone monitoring data. Using data from a cohort of 774 participants, we demonstrate that our deep-learning models are able to distinguish between people with and without MS with an area under the receiver operating characteristic curve of 0.88 (95% CI: 0.70, 0.88). Our experimental results indicate that digital biomarkers derived from smartphone data could in the future be used as additional diagnostic criteria for MS.
引用
收藏
页码:1284 / 1291
页数:8
相关论文
共 50 条
[41]   Assessing tissue damage in multiple sclerosis: a biomarker approach [J].
Burman, J. ;
Zetterberg, H. ;
Fransson, M. ;
Loskog, A. Sl ;
Raininko, R. ;
Fagius, J. .
ACTA NEUROLOGICA SCANDINAVICA, 2014, 130 (02) :81-89
[42]   Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap [J].
Pontillo, Giuseppe ;
Prados, Ferran ;
Colman, Jordan ;
Kanber, Baris ;
Abdel-Mannan, Omar ;
Al-Araji, Sarmad ;
Bellenberg, Barbara ;
Bianchi, Alessia ;
Bisecco, Alvino ;
Brownlee, Wallace J. ;
Brunetti, Arturo ;
Cagol, Alessandro ;
Calabrese, Massimiliano ;
Castellaro, Marco ;
Christensen, Ronja ;
Cocozza, Sirio ;
Colato, Elisa ;
Collorone, Sara ;
Cortese, Rosa ;
De Stefano, Nicola ;
Enzinger, Christian ;
Filippi, Massimo ;
Foster, Michael A. ;
Gallo, Antonio ;
Gasperini, Claudio ;
Gonzalez-Escamilla, Gabriel ;
Granziera, Cristina ;
Groppa, Sergiu ;
Hacohen, Yael ;
Harbo, Hanne F. F. ;
He, Anna ;
Hogestol, Einar A. ;
Kuhle, Jens ;
Llufriu, Sara ;
Lukas, Carsten ;
Martinez-Heras, Eloy ;
Messina, Silvia ;
Moccia, Marcello ;
Mohamud, Suraya ;
Nistri, Riccardo ;
Nygaard, Gro O. ;
Palace, Jacqueline ;
Petracca, Maria ;
Pinter, Daniela ;
Rocca, Maria A. ;
Rovira, Alex ;
Ruggieri, Serena ;
Sastre-Garriga, Jaume ;
Strijbis, Eva M. ;
Toosy, Ahmed T. .
NEUROLOGY, 2024, 103 (10)
[43]   The need for a strategic therapeutic approach: multiple sclerosis in check [J].
Inojosa, Hernan ;
Proschmann, Undine ;
Akguen, Katja ;
Ziemssen, Tjalf .
THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2022, 13
[44]   A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis [J].
Pontillo, G. ;
Tommasin, S. ;
Cuocolo, R. ;
Petracca, M. ;
Petsas, N. ;
Ugga, L. ;
Carotenuto, A. ;
Pozzilli, C. ;
Iodice, R. ;
Lanzillo, R. ;
Quarantelli, M. ;
Morra, V. Brescia ;
Tedeschi, E. ;
Pantano, P. ;
Cocozza, S. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (11) :1927-1933
[45]   Comparison of Deep Learning and Support Vector Machine Learning for Subgroups of Multiple Sclerosis [J].
Karaca, Yeliz ;
Cattani, Carlo ;
Moonis, Majaz .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT II, 2017, 10405 :142-153
[46]   Predicting disease severity in multiple sclerosis using multimodal data and machine learning [J].
Andorra, Magi ;
Freire, Ana ;
Zubizarreta, Irati ;
de Rosbo, Nicole Kerlero ;
Bos, Steffan D. ;
Rinas, Melanie ;
Hogestol, Einar A. ;
Benavent, Sigrid A. de Rodez ;
Berge, Tone ;
Brune-Ingebretse, Synne ;
Ivaldi, Federico ;
Cellerino, Maria ;
Pardini, Matteo ;
Vila, Gemma ;
Pulido-Valdeolivas, Irene ;
Martinez-Lapiscina, Elena H. ;
Llufriu, Sara ;
Saiz, Albert ;
Blanco, Yolanda ;
Martinez-Heras, Eloy ;
Solana, Elisabeth ;
Baecker-Koduah, Priscilla ;
Behrens, Janina ;
Kuchling, Joseph ;
Asseyer, Susanna ;
Scheel, Michael ;
Chien, Claudia ;
Zimmermann, Hanna ;
Motamedi, Seyedamirhosein ;
Kauer-Bonin, Josef ;
Brandt, Alex ;
Saez-Rodriguez, Julio ;
Alexopoulos, Leonidas G. ;
Paul, Friedemann ;
Harbo, Hanne F. ;
Shams, Hengameh ;
Oksenberg, Jorge ;
Uccelli, Antonio ;
Baeza-Yates, Ricardo ;
Villoslada, Pablo .
JOURNAL OF NEUROLOGY, 2024, 271 (03) :1133-1149
[47]   Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review) [J].
Kontopodis, Eleftherios E. ;
Papadaki, Efrosini ;
Trivzakis, Eleftherios ;
Maris, Thomas G. ;
Simos, Panagiotis ;
Papadakis, Georgios Z. ;
Tsatsakis, Aristidis ;
Spandidos, Demetrios A. ;
Karantanas, Apostolos ;
Marias, Kostas .
EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (04)
[48]   Multiple sclerosis: clinical profiling and data collection as prerequisite for personalized medicine approach [J].
Ziemssen, Tjalf ;
Kern, Raimar ;
Thomas, Katja .
BMC NEUROLOGY, 2016, 16
[49]   Disability in elderly people with multiple sclerosis: An analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study [J].
Minden, SL ;
Frankel, D ;
Hadden, LS ;
Srinath, KP ;
Perloff, JN .
NEUROREHABILITATION, 2004, 19 (01) :55-67
[50]   Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review [J].
Belwal, Priyanka ;
Singh, Surendra .
Computers in Biology and Medicine, 2025, 185