A Deep Learning Approach to Diagnosing Multiple Sclerosis from Smartphone Data

被引:24
作者
Schwab, Patrick [1 ]
Karlen, Walter [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Mobile Hlth Syst Lab, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Marine vehicles; Cranes; Mathematical model; Parallel machines; Job shop scheduling; Resource management; Safety; Artificial neural networks; digital biomarkers; medical diagnosis; multiple sclerosis; explainability; DISABILITY; TIME; MRI;
D O I
10.1109/JBHI.2020.3021143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple sclerosis (MS) affects the central nervous system with a wide range of symptoms. MS can, for example, cause pain, changes in mood and fatigue, and may impair a person's movement, speech and visual functions. Diagnosis of MS typically involves a combination of complex clinical assessments and tests to rule out other diseases with similar symptoms. New technologies, such as smartphone monitoring in free-living conditions, could potentially aid in objectively assessing the symptoms of MS by quantifying symptom presence and intensity over long periods of time. Here, we present a deep-learning approach to diagnosing MS from smartphone-derived digital biomarkers that uses a novel combination of a multilayer perceptron with neural soft attention to improve learning of patterns in long-term smartphone monitoring data. Using data from a cohort of 774 participants, we demonstrate that our deep-learning models are able to distinguish between people with and without MS with an area under the receiver operating characteristic curve of 0.88 (95% CI: 0.70, 0.88). Our experimental results indicate that digital biomarkers derived from smartphone data could in the future be used as additional diagnostic criteria for MS.
引用
收藏
页码:1284 / 1291
页数:8
相关论文
共 50 条
[31]   Smartphone tests quantify lower extremities dysfunction in multiple sclerosis [J].
Jin, Kimberly ;
Kosa, Peter ;
Bielekova, Bibiana .
FRONTIERS IN NEUROLOGY, 2024, 15
[32]   Efficiency of MRI in Detecting and Diagnosing Multiple Sclerosis: A Retrospective Study [J].
Ali, Sara ;
Elbashir, Meaad ;
Ahmed, Sawsan Said ;
Jabbari, Hanan ;
Gumiry, Hind ;
Zokan, Kamilah ;
Almubaraki, Sarah ;
Alqaari, Sara ;
Jafaari, Marwan ;
Omer, Awatif M. ;
Abuhadi, Nouf Hussain ;
Alyami, Ali .
INTERNATIONAL JOURNAL OF BIOMEDICINE, 2025, 15 (02) :371-375
[33]   Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome [J].
Yoo, Youngjin ;
Tang, Lisa Y. W. ;
Li, David K. B. ;
Metz, Luanne ;
Kolind, Shannon ;
Traboulsee, Anthony L. ;
Tam, Roger C. .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2019, 7 (03) :250-259
[34]   Statistical classifiers for diagnosing disease from immune repertoires: a case study using multiple sclerosis [J].
Ostmeyer, Jared ;
Christley, Scott ;
Rounds, William H. ;
Toby, Inimary ;
Greenberg, Benjamin M. ;
Monson, Nancy L. ;
Cowell, Lindsay G. .
BMC BIOINFORMATICS, 2017, 18
[35]   Preservation of motor skill learning in patients with multiple sclerosis [J].
Tomassini, Valentina ;
Johansen-Berg, Heidi ;
Leonardi, Laura ;
Paixao, Luis ;
Jbabdi, Saad ;
Palace, Jackie ;
Pozzilli, Carlo ;
Matthews, Paul M. .
MULTIPLE SCLEROSIS JOURNAL, 2011, 17 (01) :103-115
[36]   Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort [J].
Greselin, Martina ;
Lu, Po-Jui ;
Melie-Garcia, Lester ;
Ocampo-Pineda, Mario ;
Galbusera, Riccardo ;
Cagol, Alessandro ;
Weigel, Matthias ;
Siebenborn, Nina de Oliveira ;
Ruberte, Esther ;
Benkert, Pascal ;
Mueller, Stefanie ;
Finkener, Sebastian ;
Vehoff, Jochen ;
Disanto, Giulio ;
Findling, Oliver ;
Chan, Andrew ;
Salmen, Anke ;
Pot, Caroline ;
Bridel, Claire ;
Zecca, Chiara ;
Derfuss, Tobias ;
Lieb, Johanna M. ;
Diepers, Michael ;
Wagner, Franca ;
Vargas, Maria I. ;
Pasquier, Renaud Du ;
Lalive, Patrice H. ;
Pravata, Emanuele ;
Weber, Johannes ;
Gobbi, Claudio ;
Leppert, David ;
Kim, Olaf Chan-Hi ;
Cattin, Philippe C. ;
Hoepner, Robert ;
Roth, Patrick ;
Kappos, Ludwig ;
Kuhle, Jens ;
Granziera, Cristina .
BIOENGINEERING-BASEL, 2024, 11 (08)
[37]   Deep Learning for Multiple Sclerosis Differentiation Using Multi-Stride Dynamics in Gait [J].
Kaur, Rachneet ;
Levy, Joshua ;
Motl, Robert W. ;
Sowers, Richard ;
Hernandez, Manuel E. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (07) :2181-2192
[38]   A generalized deep learning network for fractional anisotropy reconstruction: Application to epilepsy and multiple sclerosis [J].
Gaviraghi, Marta ;
Ricciardi, Antonio ;
Palesi, Fulvia ;
Brownlee, Wallace ;
Vitali, Paolo ;
Prados, Ferran ;
Kanber, Baris ;
Wheeler-Kingshott, Claudia A. M. Gandini .
FRONTIERS IN NEUROINFORMATICS, 2022, 16
[39]   Improved multiple sclerosis diagnosis with advanced deep learning techniques [J].
Pandian, A. ;
Udhayakumar, G. .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (06) :2128-2141
[40]   Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics [J].
Rocca, Maria A. ;
Anzalone, Nicoletta ;
Storelli, Loredana ;
Del Poggio, Anna ;
Cacciaguerra, Laura ;
Manfredi, Angelo A. ;
Meani, Alessandro ;
Filippi, Massimo .
INVESTIGATIVE RADIOLOGY, 2021, 56 (04) :252-260