Limits of crystalline representations

被引:70
作者
Berger, L [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
p-adic representations; crystalline representations; Wach modules; deformations;
D O I
10.1112/S0010437X04000879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be the fraction field of the ring of Witt vectors over a perfect field of characteristic p (for example F = Q(p)), and let G(F) be the absolute Galois group of F. The main result of this article is the following: a p-adic representation of G(F), which is a limit of subquotients of crystalline representations with Hodge-Tate weights in an interval [a; b], is itself crystalline with Hodge-Tate weights in [a, b]. In order to show this, we study the (rho, Gamma)-modules attached to crystalline representations, which allows us to improve some results of Fontaine, Wach and Colmez.
引用
收藏
页码:1473 / 1498
页数:26
相关论文
共 23 条
[1]  
[Anonymous], 2003, Doc. Math., P99
[2]   ZEROS OF POLYNOMIALS OVER LOCAL FIELDS - GALOIS ACTION [J].
AX, J .
JOURNAL OF ALGEBRA, 1970, 15 (03) :417-&
[3]   Construction of some families of 2-dimensional crystalline representations [J].
Berger, L ;
Li, HF ;
Zhu, HJ .
MATHEMATISCHE ANNALEN, 2004, 329 (02) :365-377
[4]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[5]   A remark on local p-adic Galois representations and congruences between Hilbert modular forms [J].
Breuil, C .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (03) :459-472
[6]   Iwasawa theory for Rham representations of a local body [J].
Colmez, P .
ANNALS OF MATHEMATICS, 1998, 148 (02) :485-571
[7]   Construction of semi-stable p-adic representations [J].
Colmez, P ;
Fontaine, JM .
INVENTIONES MATHEMATICAE, 2000, 140 (01) :1-43
[8]  
Colmez P, 1999, J REINE ANGEW MATH, V514, P119
[9]  
Colmez P, 2002, J INST MATH JUSSIEU, V1, P331
[10]  
Fontaine J.-M., 1990, PROGR MATH, V2, P249