On Jensen's inequality for g-expectation

被引:18
作者
Jiang, L [1 ]
Chen, ZJ
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[2] China Univ Min & Technol, Dept Math, Jiangsu 221008, Peoples R China
[3] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
关键词
backward stochastic differential equation; Jensen's inequality; g-expectation; comparison theorem;
D O I
10.1142/S0252959904000378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Briand et al. gave a counterexample showing that given g, Jensen's inequality for g-expectation usually does not hold in general. This paper proves that Jensen's inequality for g-expectation holds in general if and only if the generator g(t, z) is super-homogeneous in z. In particular, g is not necessarily convex in z.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 8 条
[1]   A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION [J].
Briand, Philippe ;
Coquet, Francois ;
Hu, Ying ;
Memin, Jean ;
Peng, Shige .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :101-117
[2]   Ambiguity, risk, and asset returns in continuous time [J].
Chen, ZJ ;
Epstein, L .
ECONOMETRICA, 2002, 70 (04) :1403-1443
[3]   A general downcrossing inequality for g-martingales [J].
Chen, ZJ ;
Peng, SG .
STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) :169-175
[4]   Filtration-consistent, nonlinear expectations and related g-expectations [J].
Coquet, F ;
Hu, Y ;
Mémin, J ;
Peng, SG .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (01) :1-27
[5]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[6]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[7]  
Peng S., 1997, Pitman research notes in mathematics series, V364, P141
[8]  
Peng SM, 2002, ACTA METALL SIN, V38, P119