LIQA: long-read isoform quantification and analysis

被引:41
作者
Hu, Yu [1 ]
Fang, Li [1 ]
Chen, Xuelian [2 ]
Zhong, Jiang F. [2 ]
Li, Mingyao [3 ]
Wang, Kai [1 ,4 ]
机构
[1] Childrens Hosp Philadelphia, Raymond G Perelman Ctr Cellular & Mol Therapeut, Philadelphia, PA 19104 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Otolaryngol, Los Angeles, CA 90033 USA
[3] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA 19104 USA
关键词
RNA-SEQ; MESSENGER-RNA; EXPRESSION; TRANSCRIPTOME; COMPLEXITY; RECEPTORS;
D O I
10.1186/s13059-021-02399-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Long-read RNA sequencing (RNA-seq) technologies can sequence full-length transcripts, facilitating the exploration of isoform-specific gene expression over short-read RNA-seq. We present LIQA to quantify isoform expression and detect differential alternative splicing (DAS) events using long-read direct mRNA sequencing or cDNA sequencing data. LIQA incorporates base pair quality score and isoform-specific read length information in a survival model to assign different weights across reads, and uses an expectation-maximization algorithm for parameter estimation. We apply LIQA to long-read RNA-seq data from the Universal Human Reference, acute myeloid leukemia, and esophageal squamous epithelial cells and demonstrate its high accuracy in profiling alternative splicing events.
引用
收藏
页数:21
相关论文
共 59 条
[1]   Opportunities and challenges in long-read sequencing data analysis [J].
Amarasinghe, Shanika L. ;
Su, Shian ;
Dong, Xueyi ;
Zappia, Luke ;
Ritchie, Matthew E. ;
Gouil, Quentin .
GENOME BIOLOGY, 2020, 21 (01)
[2]   Near-optimal probabilistic RNA-seq quantification [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (05) :525-527
[3]   GENOMICS Next regeneration sequencing for reference genomes [J].
Burgess, Darren J. .
NATURE REVIEWS GENETICS, 2018, 19 (03) :126-126
[4]   Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells [J].
Byrne, Ashley ;
Beaudin, Anna E. ;
Olsen, Hugh E. ;
Jain, Miten ;
Cole, Charles ;
Palmer, Theron ;
DuBois, Rebecca M. ;
Forsberg, E. Camilla ;
Akeson, Mark ;
Vollmers, Christopher .
NATURE COMMUNICATIONS, 2017, 8
[5]   Long Read Single-Molecule Real-Time Sequencing Elucidates Transcriptome-Wide Heterogeneity and Complexity in Esophageal Squamous Cells [J].
Cheng, Yin-Wei ;
Chen, Yun-Mei ;
Zhao, Qian-Qian ;
Zhao, Xing ;
Wu, Ya-Ru ;
Chen, Dan-Ze ;
Liao, Lian-Di ;
Chen, Yang ;
Yang, Qian ;
Xu, Li-Yan ;
Li, En-Min ;
Xu, Jian-Zhen .
FRONTIERS IN GENETICS, 2019, 10
[6]   Acute myeloid leukemia: a comprehensive review and 2016 update [J].
De Kouchkovsky, I. ;
Abdul-Hay, M. .
BLOOD CANCER JOURNAL, 2016, 6 :e441-e441
[7]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[8]  
Gao Fan, 2018, International Journal of Computational Biology and Drug Design, V11, P5, DOI 10.1504/IJCBDD.2018.090839
[9]   Benchmark and integration of resources for the estimation of human transcription factor activities [J].
Garcia-Alonso, Luz ;
Holland, Christian H. ;
Ibrahim, Mahmoud M. ;
Turei, Denes ;
Saez-Rodriguez, Julio .
GENOME RESEARCH, 2019, 29 (08) :1363-1375
[10]   Trans-NanoSim characterizes and simulates nanopore RNA-sequencing data [J].
Hafezqorani, Saber ;
Yang, Chen ;
Lo, Theodora ;
Nip, Ka Ming ;
Warren, Rene L. ;
Birol, Inanc .
GIGASCIENCE, 2020, 9 (06)