Dykstra's algorithm for constrained least-squares rectangular matrix problems

被引:28
作者
Escalante, R [1 ]
Raydan, M [1 ]
机构
[1] Cent Univ Venezuela, Fac Ciencias, Dept Computac, Caracas 1041A, Venezuela
关键词
alternating projection methods; Dykstra's algorithm; singular value decomposition; constrained least-squares; Gerschgorin circles;
D O I
10.1016/S0898-1221(98)00020-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper, the authors applied Dykstra's alternating projection algorithm to solve constrained least-squares n x n matrix problems. We extend these results in two different directions. First, we make use of the singular value decomposition to solve now constrained least-squares rectangular m x n matrix problems that arise in several applications. Second, we propose a new and improved implementation of the projection algorithm onto the epsilon-positive definite set of matrices. This implementation does not require the computation of all eigenvalues and eigenvectors of a matrix per iteration, and still guarantees convergence. Finally, encouraging preliminary numerical results are discussed.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 16 条
[1]   POSITIVE SEMIDEFINITE MATRICES - CHARACTERIZATION VIA CONICAL HULLS AND LEAST-SQUARES SOLUTION OF A MATRIX EQUATION [J].
ALLWRIGHT, JC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :537-556
[2]  
ANDERSON E, 1992, LOPACK USERS GUIDE
[3]   A constrained procrustes problem [J].
Andersson, LE ;
Elfving, T .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :124-139
[4]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[5]  
Boyle J. P., 1986, Advances in Order Restricted Statistical Inference, P28, DOI DOI 10.1007/978-1-4613-9940-7_3
[6]  
DEUTSCH F, 1992, NATO ADV SCI I C-MAT, V356, P105
[7]   AN ALGORITHM FOR RESTRICTED LEAST-SQUARES REGRESSION [J].
DYKSTRA, RL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (384) :837-842
[8]  
Escalante R, 1996, NUMER LINEAR ALGEBR, V3, P459
[9]   AN ALTERNATING PROJECTION ALGORITHM FOR COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX [J].
GLUNT, W ;
HAYDEN, TL ;
HONG, S ;
WELLS, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (04) :589-600
[10]  
Golub G.H., 1996, Matrix Computations, Vthird