EVALUATION OF AUTOMATIC ATLAS-BASED LYMPH NODE SEGMENTATION FOR HEAD-AND-NECK CANCER

被引:119
作者
Stapleford, Liza J. [2 ]
Lawson, Joshua D. [2 ]
Perkins, Charles [2 ]
Edelman, Scott [2 ]
Davis, Lawrence [2 ]
McDonald, Mark W. [2 ,3 ]
Waller, Anthony [2 ]
Schreibmann, Eduard [2 ]
Fox, Tim [1 ,2 ]
机构
[1] Emory Univ, Sch Med, Winship Canc Ctr, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Indiana Univ, Dept Radiat Oncol, Melvin & Bren Simon Canc Ctr, Indianapolis, IN 46204 USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2010年 / 77卷 / 03期
关键词
Auto-segmentation; Intensity-modulated radiotherapy; Deformable image registration; Interobserver variability; Neck nodal volumes; DEFORMABLE IMAGE REGISTRATION; MODULATED RADIATION-THERAPY; CONFORMAL RADIOTHERAPY; VOLUME DELINEATION; TARGET; CT; VARIABILITY; DEFINITION; CARCINOMA; IMPACT;
D O I
10.1016/j.ijrobp.2009.09.023
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To evaluate if automatic atlas-based lymph node segmentation (INS) improves efficiency and decreases inter-observer variability while maintaining accuracy. Methods and Materials: Five physicians with head-and-neck IMRT experience used computed tomography (CT) data from 5 patients to create bilateral neck clinical target volumes covering specified nodal levels. A second contour set was automatically generated using a commercially available atlas. Physicians modified the automatic contours to make them acceptable for treatment planning. To assess contour variability, the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was used to take collections of contours and calculate a probabilistic estimate of the "true" segmentation. Differences between the manual, automatic, and automatic-modified (AM) contours were analyzed using multiple metrics. Results: Compared with the "true" segmentation created from manual contours, the automatic contours had a high degree of accuracy, with sensitivity, Dice similarity coefficient, and mean/max surface disagreement values comparable to the average manual contour (86%, 76%, 3.3/17.4 nun automatic vs. 73%, 79%, 2.8/17 mm manual). The AM group was more consistent than the manual group for multiple metrics, most notably reducing the range of contour volume (106-430 mL manual vs. 176-347 mL AM) and percent false positivity (1-37% manual vs. 1-7% AM). Average contouring time savings with the automatic segmentation was 11.5 min per patient, a 35% reduction. Conclusions: Using the STAPLE algorithm to generate "true" contours from multiple physician contours, we demonstrated that, in comparison with manual segmentation, atlas-based automatic LNS for head-and-neck cancer is accurate, efficient, and reduces interobserver variability. (C) 2010 Elsevier Inc.
引用
收藏
页码:959 / 966
页数:8
相关论文
共 18 条
[11]  
Hong TS, 2004, INT J RADIAT ONCOL, V60, pS157, DOI 10.1016/S0360-3016(04)01130-7
[12]   Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy [J].
Lawson, Joshua D. ;
Schreibmann, Eduard ;
Jani, Ashesh B. ;
Fox, Tim .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2007, 8 (04) :96-113
[13]   VARIABILITY OF TARGET AND NORMAL STRUCTURE DELINEATION FOR BREAST CANCER RADIOTHERAPY: AN RTOG MULTI-INSTITUTIONAL AND MULTIOBSERVER STUDY [J].
Li, X. Allen ;
Tai, An ;
Arthur, Douglas W. ;
Buchholz, Thomas A. ;
Macdonald, Shannon ;
Marks, Lawrence B. ;
Moran, Jean M. ;
Pierce, Lori J. ;
Rabinovitch, Rachel ;
Taghian, Alphonse ;
Vicini, Frank ;
Woodward, Wendy ;
White, Julia R. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 73 (03) :944-951
[14]   Inter-observer contouring variations of head-and-neck anatomy [J].
O'Daniel, JC ;
Rosenthal, DI ;
Barker, JL ;
Ahamad, A ;
Asper, JA ;
Blanco, AI ;
de Crevoisier, R ;
Holsinger, FC ;
Schwartz, DI ;
Ang, KK ;
Dong, L ;
Garden, AS .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (02) :S370-S370
[15]   The potential impact of CT-MRI matching on tumor volume delineation in advanced head and neck cancer [J].
Rasch, C ;
Keus, R ;
Pameijer, FA ;
Koops, W ;
deRu, V ;
Muller, S ;
Touw, A ;
Bartelink, H ;
vanHerk, M ;
Lebesque, JV .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 39 (04) :841-848
[16]   AUTOMATIC SEGMENTATION OF WHOLE BREAST USING ATLAS APPROACH AND DEFORMABLE IMAGE REGISTRATION [J].
Reed, Valerie K. ;
Woodward, Wendy A. ;
Zhang, Lifei ;
Strom, Eric A. ;
Perkins, George H. ;
Tereffe, Welela ;
Oh, Julia L. ;
Yu, T. Kuan ;
Bedrosian, Isabelle ;
Whitman, Gary J. ;
Buchholz, Thomas A. ;
Dong, Lei .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 73 (05) :1493-1500
[17]   Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation [J].
Warfield, SK ;
Zou, KH ;
Wells, WM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (07) :903-921
[18]  
Weiss E, 2003, STRAHLENTHER ONKOL, V179, P21, DOI 10.1007/s00066-003-0976-5