Ricci-flat Kahler metrics on crepant resolutions of Kahler cones

被引:35
作者
van Coevering, Craig [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Calabi-Yau manifold; Sasaki manifold; Einstein metric; Ricci-flat manifold; Toric varieties; SASAKI-EINSTEIN METRICS; MANIFOLDS; CONSTRUCTION;
D O I
10.1007/s00208-009-0446-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a crepant resolution pi : Y -> X of a Ricci-flat Kahler cone X admits a complete Ricci-flat Kahler metric asymptotic to the cone metric in every Kahler class in H-c(2) (Y, R). A Kahler cone (X, (g) over bar) is a metric cone over a Sasaki manifold (S, g), i.e. X = C(S) := S x R->0 with (g) over bar = dr(2) + r(2)g, and (X, (g) over bar ) is Ricci-flat precisely when (S, g) Einstein of positive scalar curvature. This result contains as a subset the existence of ALE Ricci-flat Kahler metrics on crepant resolutions pi : Y -> X = C-n/Gamma, with Gamma subset of SL(n, C), due to P. Kronheimer (n = 2) and D. Joyce (n > 2). We then consider the case when X = C(S) is toric. It is a result of A. Futaki, H. Ono, and G. Wang that any Gorenstein toric K hler cone admits a Ricci-flat K hler cone metric. It follows that if a toric Kahler cone X = C(S) admits a crepant resolution pi : Y -> X, then Y admits a T-n-invariant Ricci-flat K hler metric asymptotic to the cone metric (X, (g) over bar ) in every K hler class in H-c(2) (Y, R). A crepant resolution, in this context, is a simplicial fan refining the convex polyhedral cone defining X. We then list some examples which are easy to construct using toric geometry.
引用
收藏
页码:581 / 611
页数:31
相关论文
共 41 条
[1]  
[Anonymous], 2008, OXFORD MATH MONOGRAP
[2]  
[Anonymous], 2001, J. Symplectic Geom.
[3]  
[Anonymous], 1957, Nagoya Math. J.
[4]  
[Anonymous], REND CIRC MAT PA S75
[5]  
[Anonymous], 2003, Symplectic and contact topology: interactions and perspectives
[6]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[7]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[8]  
BOYER C, 2008, PROGR MATH, V271, P263
[9]   Einstein metrics on spheres [J].
Boyer, CP ;
Galicki, K ;
Kollár, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :557-580
[10]  
BOYER CP, 1999, SURVEYS DIFFERENTIAL, V6