A GLOBAL CONVERGENCE PROOF FOR CYCLIC JACOBI METHODS WITH BLOCK ROTATIONS

被引:19
作者
Drmac, Zlatko [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
eigenvalues; convergence; Jacobi method; RELATIVE PERTURBATION-THEORY; DECOMPOSITION; ALGORITHMS; ACCURATE;
D O I
10.1137/090748548
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a globally convergent block (column- and row-) cyclic Jacobi method for diagonalization of Hermitian matrices and for computation of the singular value decomposition of general matrices. It is shown that a block rotation (a generalization of the Jacobi 2 x 2 rotation) can be computed and implemented in a particular way to guarantee global convergence. The proof includes the convergence of the eigenspaces in the general case of multiple eigenvalues. This solves a long standing open problem of convergence of block cyclic Jacobi methods.
引用
收藏
页码:1329 / 1350
页数:22
相关论文
共 33 条
[1]  
[Anonymous], 1997, GRAD TEXTS MATH
[2]  
[Anonymous], 1846, Crelle's Journal
[3]  
ARBENZ P, 1992, 178 ETH ZUR DEP INF
[4]  
Businger P., 1965, Numer. Math, V7, P269, DOI DOI 10.1007/BF01436084
[5]  
Causey R.L., 1960, NUMER MATH, V2, P67, DOI [10.1007/BF01386211., DOI 10.1007/BF01386211]
[6]   ROTATION OF EIGENVECTORS BY A PERTURBATION .3. [J].
DAVIS, C ;
KAHAN, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :1-&
[7]   Computing the singular value decomposition with high relative accuracy [J].
Demmel, J ;
Gu, M ;
Eisenstat, S ;
Slapnicar, I ;
Veselic, K ;
Drmac, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :21-80
[8]   JACOBIS METHOD IS MORE ACCURATE THAN QR [J].
DEMMEL, J ;
VESELIC, K .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (04) :1204-1245
[9]   Accurate singular value decompositions of structured matrices [J].
Demmel, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) :562-580
[10]  
Demmel J., 1989, 14 LAPACK U TENN COM