Latin Bitrades, Dissections of Equilateral Triangles, and Abelian Groups

被引:7
作者
Drapal, Ales [1 ]
Haemaelaeinen, Carlo [1 ]
Kala, Vitezslav [1 ]
机构
[1] Charles Univ Prague, Dept Math, Prague 18675 8, Czech Republic
关键词
abelian group; latin bitrade; dissection of equilateral triangle; CONSTRUCTION;
D O I
10.1002/jcd.20237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = (T*, T-Delta) he a spherical latin bitrade. With each a = (a(1), a(2), a(3)) is an element of T* associate a set of linear equations Eq(T, a) of the form b(1) + b(2) = b(3), where b = (b(1), b(2), b(3)) runs through T*\{a}. Assume a(1) = 0 = a(2) and a(3) = 1. Then Eq(T, a) has in rational numbers a unique solution b(i) = (b) over bar (i). Suppose that (b) over bar (i) not equal (c) over bar (i) for all b, c is an element of T* such that (b) over bar (i) not equal c(i) and i is an element of {1, 2, 3}. We prove that then T-Delta can be interpreted as a dissection of an equilateral triangle. We also consider group modifications of latin bitrades and show that the methods for generating the dissections can be used for a proof that T* can be embedded into the operational table of a finite abelian group, for every spherical latin bitrade T. (C) 2009 Wiley Periodicals, Inc. J Combin Designs 18: 1-24, 2010
引用
收藏
页码:1 / 24
页数:24
相关论文
共 18 条
[1]  
Batagelj V., 1989, BANACH CTR PUBL, V25, P11, DOI 10.4064/-25-1-11-18
[2]  
BRINKMAN G, GUIDE USING PLANTRI
[3]   Planar Eulerian triangulations are equivalent to spherical Latin bitrades [J].
Cavenagh, Nicholas ;
Lisonek, Petr .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (01) :193-197
[4]   The theory and application of latin bitrades: A survey [J].
Cavenagh, Nicholas J. .
MATHEMATICA SLOVACA, 2008, 58 (06) :691-718
[5]  
CAVENAGH NJ, J ALGEBRAIC IN PRESS
[6]  
Colbourn CJ., 2007, CRC HDB COMBINATORIA
[7]  
DRAPAL A, 1991, CZECH MATH J, V41, P538
[8]   Hamming distances of groups and quasi-groups [J].
Drápal, A .
DISCRETE MATHEMATICS, 2001, 235 (1-3) :189-197
[9]  
DRAPAL A, COMMENT MAT IN PRESS
[10]  
DRAPAL A, 1988, LATIN SQUARES PARTIA