Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces

被引:58
作者
Bereanu, Cristian [3 ]
Jebelean, Petru [2 ]
Mawhin, Jean [1 ]
机构
[1] Catholic Univ Louvain, Dept Math, B-1348 Louvain, Belgium
[2] W Univ Timisoara, Dept Math, RO-300223 Timisoara, Romania
[3] Romanian Acad, Inst Math Simion Stoilow, RO-010702 Bucharest, Romania
关键词
Mean curvature operators; Neumann problem; radial solutions; fixed point operators; Leray-Schauder degree; HYPERSURFACES; EXISTENCE; LAPLACIAN; EQUATIONS; PENDULUM;
D O I
10.1002/mana.200910083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the existence of radial solutions for Neumann problems in a ball and in an annular domain, associated to mean curvature operators in Euclidean and Mmkowski spaces. Our approach relies on the Leray-Schauder degree together with some fixed point reformulations of our nonlinear Neumann boundary value problems (C) 2010 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim
引用
收藏
页码:379 / 391
页数:13
相关论文
共 22 条
[1]   ELLIPTIC EQUATIONS WITH NON-INVERTIBLE FREDHOLM LINEAR PART AND BOUNDED NONLINEARITIES [J].
AMANN, H ;
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (02) :179-194
[2]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[3]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[4]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[5]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[6]  
Bereanu C, 2006, ADV DIFFERENTIAL EQU, V11, P35
[7]  
BEREANU C, AIP C P IN PRESS
[8]  
Calabi E., 1970, Proc. Symp. Pure Math., VXV, P223
[9]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[10]   On a modified capillary equation [J].
Clement, P ;
Manasevich, R ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (02) :343-358