SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication

被引:84
作者
Zheng, Zhou-Qin [1 ,2 ]
Wang, Su-Yun [1 ]
Xu, Zhi-Sheng [1 ]
Fu, Yu-Zhi [1 ]
Wang, Yan-Yi [1 ,2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Virol, Ctr Biosafety Mega Sci, Key Lab Special Pathogens & Biosafety, Wuhan, Hubei, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
KINASE PKR; VIRUS; DIMERIZATION; ACTIVATION; TRANSLATION; PHOSPHORYLATION; INHIBITION; G3BP1;
D O I
10.1038/s41421-021-00275-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The newly emerging coronavirus SARS-CoV-2 causes severe lung disease and substantial mortality. How the virus evades host defense for efficient replication is not fully understood. In this report, we found that the SARS-CoV-2 nucleocapsid protein (NP) impaired stress granule (SG) formation induced by viral RNA. SARS-CoV-2 NP associated with the protein kinase PKR after dsRNA stimulation. SARS-CoV-2 NP did not affect dsRNA-induced PKR oligomerization, but impaired dsRNA-induced PKR phosphorylation (a hallmark of its activation) as well as SG formation. SARS-CoV-2 NP also targeted the SG-nucleating protein G3BP1 and impaired G3BP1-mediated SG formation. Deficiency of PKR or G3BP1 impaired dsRNA-triggered SG formation and increased SARS-CoV-2 replication. The NP of SARS-CoV also targeted both PKR and G3BP1 to impair dsRNA-induced SG formation, whereas the NP of MERS-CoV targeted PKR, but not G3BP1 for the impairment. Our findings suggest that SARS-CoV-2 NP promotes viral replication by impairing formation of antiviral SGs, and reveal a conserved mechanism on evasion of host antiviral responses by highly pathogenic human betacoronaviruses.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells [J].
Alarifi, Saud ;
Ali, Daoud ;
Alkahtani, Saad ;
Siddiqui, Maqsood A. ;
Ali, Bahy A. .
ONCOTARGETS AND THERAPY, 2013, 6 :75-84
[2]   The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators [J].
Bou-Nader, Charles ;
Gordon, Jackson M. ;
Henderson, Frances E. ;
Zhang, Jinwei .
RNA, 2019, 25 (05) :539-556
[3]   Emerging coronaviruses: Genome structure, replication, and pathogenesis [J].
Chen, Yu ;
Liu, Qianyun ;
Guo, Deyin .
JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (04) :418-423
[4]   The double-stranded RNA-dependent protein kinase PKR: Structure and function [J].
Clemens, MJ ;
Elia, A .
JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 1997, 17 (09) :503-524
[5]   Mechanistic link between PKR dimerization, autophosphorylation, and elF2α substrate recognition [J].
Dey, M ;
Cao, C ;
Dar, AC ;
Tamura, T ;
Ozato, K ;
Sicheri, F ;
Dever, TE .
CELL, 2005, 122 (06) :901-913
[6]   Conserved intermolecular salt bridge required for activation of protein kinases PKR, GCN2, and PERK [J].
Dey, Madhusudan ;
Cao, Chune ;
Sicheri, Frank ;
Dever, Thomas E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (09) :6653-6660
[7]   Activation of Protein Kinase PKR Requires Dimerization-induced cis-Phosphorylation within the Activation Loop [J].
Dey, Madhusudan ;
Mann, Brian Rick ;
Anshu, Ashish ;
Amin-ul Mannan, M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (09) :5747-5757
[8]  
Fehr AR, 2015, METHODS MOL BIOL, V1282, P1, DOI 10.1007/978-1-4939-2438-7_1
[9]   Human Coronavirus: Host-Pathogen Interaction [J].
Fung, To Sing ;
Liu, Ding Xiang .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 73, 2019, 73 :529-557
[10]   The dsRNA protein kinase PKR:: Virus and cell control [J].
Garcia, M. A. ;
Meurs, E. F. ;
Esteban, M. .
BIOCHIMIE, 2007, 89 (6-7) :799-811