Controlling Li deposition below the interface

被引:174
作者
Cao, Wenzhuo [1 ,2 ]
Li, Quan [1 ]
Yu, Xiqian [1 ,2 ]
Li, Hong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Yangtze River Delta Phys Res Ctr Co Ltd, Liyang 213300, Peoples R China
来源
ESCIENCE | 2022年 / 2卷 / 01期
基金
中国国家自然科学基金;
关键词
Li deposition; Lithium metal anode; Interface; Dendrite; Solid-state electrolyte; SOLID-ELECTROLYTE INTERPHASE; LITHIUM-METAL ANODE; ATOMIC-FORCE MICROSCOPY; NANOPARTICLE HYBRID ELECTROLYTES; LOCAL CURRENT-DENSITY; CERAMIC-IN-POLYMER; LONG-CYCLE-LIFE; DENDRITE GROWTH; FLUOROETHYLENE CARBONATE; IONIC-CONDUCTIVITY;
D O I
10.1016/j.esci.2022.02.002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The desire for high-energy-density batteries calls for the revival of the Li metal anode. However, its application is hindered by enormous challenges associated with Li deposition/desolvation behaviors, such as side reactions, volume change, and dendrite formation. To overcome these challenges, Li deposition must be controlled to remain below the separator. Further, to enable longer cycle life, Li deposition should be constrained below the solid electrolyte interphase (SEI). To achieve these goals, it is critical to have a deep theoretical understanding and corresponding strategies. This paper examines Li plating/stripping in terms of behaviors, mechanisms, and influencing factors, and it proposes general strategies to control Li deposition. Comprehensive design strategies for the electrode, electrolyte, and their interface are essential. Three dimensional (3D) anodes are recommended to store most of the Li deposited below the surface of the anode. Artificial interface engineering can reduce the risk of Li deposition outside of the 3D anode, while electrolyte engineering favors Li transport, regulates Li deposition, and suppresses dendrites, serving as the final barrier to uncontrolled Li deposition. This paper reviews systemic theories and solutions to control Li deposition below the interface, paving the way for a promising route to build safer lithium metal batteries.
引用
收藏
页码:47 / 78
页数:32
相关论文
共 343 条
[1]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[2]   Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal [J].
Aguesse, Frederic ;
Manalastas, William ;
Buannic, Lucienne ;
Lopez del Amo, Juan Miguel ;
Singh, Gurpreet ;
Llordes, Anna ;
Kilner, John .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) :3808-3816
[3]   Scalable process for application of stabilized lithium metal powder in Li-ion batteries [J].
Ai, Guo ;
Wang, Zhihui ;
Zhao, Hui ;
Mao, Wenfeng ;
Fu, Yanbao ;
Yi, Ran ;
Gao, Yue ;
Battaglia, Vincent ;
Wang, Donghai ;
Lopatin, Sergey ;
Liu, Gao .
JOURNAL OF POWER SOURCES, 2016, 309 :33-41
[4]   Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2014, 246 :84-89
[5]   Mathematical model of the dendritic growth during lithium electrodeposition [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2013, 232 :23-28
[6]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[7]   LITHIUM ELECTRODE CYCLEABILITY AND MORPHOLOGY DEPENDENCE ON CURRENT-DENSITY [J].
ARAKAWA, M ;
TOBISHIMA, S ;
NEMOTO, Y ;
ICHIMURA, M ;
YAMAKI, J .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :27-35
[8]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[9]   THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS [J].
AURBACH, D ;
EINELY, Y ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :L1-L3
[10]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111