Probability distributions consistent with a mixed state

被引:29
作者
Nielsen, MA [1 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevA.62.052308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A density matrix rho may be represented in many different ways as a mixture of pure states, rho = Sigma (i)p(i)\psi (i)][psi (i)\. This paper characterizes the class of probability distributions (p(i)) that may appear in such a decomposition, for a fixed density matrix rho. Several illustrative applications of this result to quantum mechanics and quantum information theory are given.
引用
收藏
页码:052308 / 052301
页数:6
相关论文
共 20 条
[1]  
Alberti P. M., 1982, Stochasticity and Partial Order
[2]  
[Anonymous], 1973, WISS KARL MARX U LEI
[3]  
[Anonymous], 1954, American Journal of Mathematics, DOI DOI 10.2307/2372705
[4]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[5]  
[Anonymous], 1996, Matrix Analysis
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   A COMPLETE CLASSIFICATION OF QUANTUM ENSEMBLES HAVING A GIVEN DENSITY-MATRIX [J].
HUGHSTON, LP ;
JOZSA, R ;
WOOTTERS, WK .
PHYSICS LETTERS A, 1993, 183 (01) :14-18
[8]   INFORMATION THEORY AND STATISTICAL MECHANICS .2. [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 108 (02) :171-190
[9]  
Landau L. D., 1927, Z PHYS, V45, P430, DOI DOI 10.1007/BF01343064
[10]   MEAN ENTROPY OF STATES IN QUANTUM-STATISTICAL MECHANICS [J].
LANFORD, OE ;
ROBINSON, DW .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (07) :1120-&