The Dirichlet problem for degenerate complex Monge-Ampere equations

被引:0
作者
Phong, D. H. [1 ]
Sturm, Jacob
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
KAHLER-EINSTEIN METRICS; PROJECTIVE-MANIFOLDS; SCALAR CURVATURE; RICCI CURVATURE; GEODESIC RAYS; GENERAL TYPE; STABILITY; SPACE; FLOW; POTENTIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dirichlet problem for a Monge-Ampere equation corresponding to a non-negative, possible degenerate cohomology class on a Kahler manifold with boundary is studied. C(1,alpha) estimates away from a divisor are obtained, by combining techniques of Blocki, Tsuji, Yau and pluripotential theory. In particular, C(1,alpha) geodesic rays in the space of Kahler potentials are constructed for each test configuration.
引用
收藏
页码:145 / 170
页数:26
相关论文
共 39 条
[1]  
[Anonymous], ARXIV08022570
[2]  
[Anonymous], 1986, Contemp. Math, DOI DOI 10.1090/CONM/049/833802
[3]  
Arezzo C, 2003, ANN SCUOLA NORM-SCI, V2, P617
[4]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[5]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[6]  
BLOCKI Z, 2009, SPACE KAHLER METRICS
[7]   A gradient estimate in the Calabi-Yau theorem [J].
Blocki, Zbigniew .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :317-327
[8]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252
[9]  
Chen X.X., ARXIVMATHDG0606228
[10]  
Chen XX, 2000, J DIFFER GEOM, V56, P189