EULERIANITY OF FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS

被引:1
作者
Gourevitch, Dmitry [1 ]
Gustafsson, Henrik P. A.
Kleinschmidt, Axel
Persson, Daniel
Sahi, Siddhartha
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, POB 26, IL-76100 Rehovot, Israel
来源
REPRESENTATION THEORY | 2021年 / 25卷
关键词
Euler product; Fourier coefficients on reductive groups; Fourier-Jacobi coefficients; automorphic forms; automorphic representation; minimal representation; next-to-minimal representation; Whittaker support; nilpotent orbit; wave-front set; Eisenstein series; SMALL REPRESENTATIONS; MINIMAL REPRESENTATIONS; EISENSTEIN SERIES; EXCEPTIONAL GROUP; CONSTRUCTIONS;
D O I
10.1090/ert/565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the question of Eulerianity (factorizability) for Fourier coefficients of automorphic forms, and we prove a general transfer theorem that allows one to deduce the Eulerianity of certain coefficients from that of another coefficient. We also establish a `hidden' invariance property of Fourier coefficients. We apply these results to minimal and next-to-minimal automorphic representations, and deduce Eulerianity for a large class of Fourier and Fourier-Jacobi coefficients. In particular, we prove Eulerianity for parabolic Fourier coefficients with characters of maximal rank for a class of Eisenstein series in minimal and next-to-minimal representations of groups of ADE-type that are of interest in string theory.
引用
收藏
页码:481 / 507
页数:27
相关论文
共 55 条
  • [1] Fourier coefficients attached to small automorphic representations of SLn (A)
    Ahlen, Olof
    Gustafsson, Henrik P. A.
    Kleinschmidt, Axel
    Liu, Baiying
    Persson, Daniel
    [J]. JOURNAL OF NUMBER THEORY, 2018, 192 : 80 - 142
  • [2] [Anonymous], 1990, FESTSCHRIFT HONOR I
  • [3] Supergravity divergences, supersymmetry and automorphic forms
    Bossard, Guillaume
    Kleinschmidt, Axel
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [4] BOURBAKI N., 1975, ELEMENTS MATH
  • [5] BUMP D, 1984, LECT NOTES MATH, V1083, pR1
  • [6] CASSELMAN W, 1980, COMPOS MATH, V41, P207
  • [7] Collingwood D. H., 1993, NOSTRAND REINHOLD MA
  • [8] Dokovic DZ, 1998, INDAGAT MATH NEW SER, V9, P31
  • [9] Explicit Hilbert spaces for certain unipotent representations II
    Dvorsky, A
    Sahi, S
    [J]. INVENTIONES MATHEMATICAE, 1999, 138 (01) : 203 - 224
  • [10] Fleig P., 2018, CAMBRIDGE STUDIES AD, V176