Structure and stability of complex coacervate core micelles with lysozyme

被引:72
|
作者
Lindhoud, Saskia [1 ]
de Vries, Renko [1 ]
Norde, Willem [1 ]
Cohen Stuart, Martien A. [1 ]
机构
[1] Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
关键词
ENTRAPPING ENZYME MOLECULES; BLOCK-COPOLYMERS; NANOPARTICLES; SCATTERING; SURFACTANTS; PROTEINS; POLYMERS; DESIGN; SYSTEM; AGENTS;
D O I
10.1021/bm0700688
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417) and the positively charged homopolymer PDMAEMA(150). For encapsulation, part of the positively charged homopolymer was replaced by the positively charged globular protein lysozyme. We have studied the formation, structure, and stability of the resulting micelles for three different mixing ratios of homopolymer and lysozyme: a system predominantly consisting of homopolymer, a system predominantly consisting of lysozyme, and a system where the molar ratio between the two positively charged molecules was almost one. We also studied complexes made of only lysozyme and PAA(42)PAAm(417). Complex formation and the salt-induced disintegration of the complexes were studied using dynamic light-scattering titrations. Small-angle neutron scattering was used to investigate the structures of the cores. We found that micelles predominantly consisting of homopolymer are spherical but that complex coacervate core micelles predominantly consisting of lysozyme are nonspherical. The stability of the micelles containing a larger fraction of lysozyme is lower.
引用
收藏
页码:2219 / 2227
页数:9
相关论文
共 50 条
  • [1] Complex coacervate core micelles with a lysozyme-modified corona
    Danial, Maarten
    Klok, Harm-Anton
    Norde, Willem
    Stuart, Martien A. Cohen
    LANGMUIR, 2007, 23 (15) : 8003 - 8009
  • [2] Complex coacervate core micelles
    Voets, Ilja K.
    de Keizer, Arie
    Stuart, Martien A. Cohen
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2009, 147-48 : 300 - 318
  • [3] On the Stability and Morphology of Complex Coacervate Core Micelles: From Spherical to Wormlike Micelles
    van der Kooij, Hanne M.
    Spruijt, Evan
    Voets, Ilja K.
    Fokkink, Remco
    Stuart, Martien A. Cohen
    van der Gucht, Jasper
    LANGMUIR, 2012, 28 (40) : 14180 - 14191
  • [4] On Complex Coacervate Core Micelles: Structure-Function Perspectives
    Magana, Jose Rodrigo
    Sproncken, Christian C. M.
    Voets, Ilja K.
    POLYMERS, 2020, 12 (09)
  • [5] Balancing Enzyme Encapsulation Efficiency and Stability in Complex Coacervate Core Micelles
    Kembaren, Riahna
    Fokkink, Remco
    Westphal, Adrie H.
    Kamperman, Marleen
    Kleijn, J. Mieke
    Borst, Jan Willem
    LANGMUIR, 2020, 36 (29) : 8494 - 8502
  • [6] Stability of complex coacervate core micelles containing metal coordination polymer
    Yan, Yun
    de Keizer, Arie
    Stuart, Martien A. Cohen
    Drechsler, Markus
    Besseling, Nicolaas A. M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (35): : 10908 - 10914
  • [7] Ionic Strength-Dependent Structure of Complex Coacervate Core Micelles
    Heo, Tae-Young
    Choi, Soo-Hyung
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (05): : 1256 - 1265
  • [8] Structure of complex coacervate core micelles: AB plus C system
    Park, Sang-Jun
    Byun, Youyoung
    Lee, Eunji
    Heo, Tae-Young
    Choi, Soo-Hyung
    POLYMER, 2025, 317
  • [9] Scaling Theory of Complex Coacervate Core Micelles
    Rumyantsev, Artem M.
    Zhulina, Ekaterina B.
    Borisov, Oleg V.
    ACS MACRO LETTERS, 2018, 7 (07): : 811 - 816
  • [10] Encapsulation of GFP in Complex Coacervate Core Micelles
    Nolles, Antsje
    Westphal, Adrie H.
    de Hoop, Jacob A.
    Fokkink, Remco G.
    Kleijn, J. Mieke
    van Berkel, Willem J. H.
    Borst, Jan Willem
    BIOMACROMOLECULES, 2015, 16 (05) : 1542 - 1549