Jordan and Einstein frames from the perspective of ω =-3/2 Hamiltonian Brans-Dicke theory

被引:4
|
作者
Galaverni, Matteo [1 ,2 ]
Gionti, Gabriele [1 ,3 ,4 ]
机构
[1] Specola Vaticana Vatican Observ, Vatican, Vatican City St, Italy
[2] INAF OAS Bologna, Via Gobetti 101, I-40129 Bologna, Italy
[3] Univ Arizona, Vatican Observ Res Grp, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[4] INFN, Lab Nazionali Frascati, Via E Fermi 40, I-00044 Frascati, Italy
关键词
SELF-DUAL FIELDS; CANONICAL FORMALISM; MACHS PRINCIPLE; EQUIVALENCE; INVARIANCE; GRAVITY;
D O I
10.1103/PhysRevD.105.084008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carefully perform a Hamiltonian Dirac's constraint analysis of the omega = -3/2 Brans-Dicke theory with the Gibbons-Hawking-York boundary term. The Poisson brackets are computed via functional derivatives. After a brief summary of the results for the omega not equal -3/2 case [G. Gionti S. J., Canonical analysis of Brans-Dicke theory addresses Hamiltonian inequivalence between the Jordan and Einstein frames, Phys. Rev. D 103, 024022 (2021)] we derive all Hamiltonian Dirac's constraints and constraint algebra in both the Jordan and the Einstein frames. Confronting and contrasting Dirac's constraint algebra in both frames, it is shown that they are not equivalent. This highlights that the transformations from the Jordan to the Einstein frames are not Hamiltonian canonical transformations.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Energy conditions in a modified Brans-Dicke theory
    Amani, Hootan
    Halpern, Paul
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (07)
  • [22] Wormhole solutions in modified Brans-Dicke theory
    Papantonopoulos, Eleftherios
    Vlachos, Christoforos
    PHYSICAL REVIEW D, 2020, 101 (06):
  • [23] Unified dark fluid in Brans-Dicke theory
    Tripathy, Sunil K.
    Behera, Dipanjali
    Mishra, Bivudutta
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (04):
  • [24] Reconsidering bulk viscosity in Brans-Dicke theory
    Devi, Kanchan
    Kumar, Pankaj
    MODERN PHYSICS LETTERS A, 2024, 39 (21N22)
  • [25] Lifshitz black holes in Brans-Dicke theory
    Maeda, Hideki
    Giribet, Gaston
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11):
  • [26] Generalized Sparling-Thirring form in the Brans-Dicke theory
    Baykal, Ahmet
    Delice, Ozgur
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (02):
  • [27] Constraint on Brans-Dicke theory from intermediate/extreme mass ratio inspirals
    Jiang, Tong
    Dai, Ning
    Gong, Yungui
    Liang, Dicong
    Zhang, Chao
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (12):
  • [28] Nucleation of vacuum bubbles in Brans-Dicke type theory
    Kim, Hongsu
    Lee, Bum-Hoon
    Lee, Wonwoo
    Lee, Young Jae
    Yeom, Dong-han
    PHYSICAL REVIEW D, 2011, 84 (02):
  • [29] Generalized Brans-Dicke theory: A dynamical systems analysis
    Roy, Nandan
    Banerjee, Narayan
    PHYSICAL REVIEW D, 2017, 95 (06)
  • [30] Constraints on the Brans-Dicke gravity theory with the Planck data
    Li, Yi-Chao
    Wu, Feng-Quan
    Chen, Xuelei
    PHYSICAL REVIEW D, 2013, 88 (08):