Jordan and Einstein frames from the perspective of ω =-3/2 Hamiltonian Brans-Dicke theory

被引:6
作者
Galaverni, Matteo [1 ,2 ]
Gionti, Gabriele [1 ,3 ,4 ]
机构
[1] Specola Vaticana Vatican Observ, Vatican, Vatican City St, Italy
[2] INAF OAS Bologna, Via Gobetti 101, I-40129 Bologna, Italy
[3] Univ Arizona, Vatican Observ Res Grp, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[4] INFN, Lab Nazionali Frascati, Via E Fermi 40, I-00044 Frascati, Italy
关键词
SELF-DUAL FIELDS; CANONICAL FORMALISM; MACHS PRINCIPLE; EQUIVALENCE; INVARIANCE; GRAVITY;
D O I
10.1103/PhysRevD.105.084008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carefully perform a Hamiltonian Dirac's constraint analysis of the omega = -3/2 Brans-Dicke theory with the Gibbons-Hawking-York boundary term. The Poisson brackets are computed via functional derivatives. After a brief summary of the results for the omega not equal -3/2 case [G. Gionti S. J., Canonical analysis of Brans-Dicke theory addresses Hamiltonian inequivalence between the Jordan and Einstein frames, Phys. Rev. D 103, 024022 (2021)] we derive all Hamiltonian Dirac's constraints and constraint algebra in both the Jordan and the Einstein frames. Confronting and contrasting Dirac's constraint algebra in both frames, it is shown that they are not equivalent. This highlights that the transformations from the Jordan to the Einstein frames are not Hamiltonian canonical transformations.
引用
收藏
页数:19
相关论文
共 60 条
[11]   Bouncing and emergent cosmologies from Arnowitt-Deser-Misner RG flows [J].
Bonanno, Alfio ;
Gionti, S. J. Gabriele ;
Platania, Alessia .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (06)
[12]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[13]   Physical non-equivalence of the Jordan and Einstein frames [J].
Capozziello, S. ;
Martin-Moruno, P. ;
Rubano, C. .
PHYSICS LETTERS B, 2010, 689 (4-5) :117-121
[14]   Conformal transformations in cosmology of modified gravity: the covariant approach perspective [J].
Carloni, Sante ;
Elizalde, Emilio ;
Odintsov, Sergei .
GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (07) :1667-1705
[15]   DETERMINATION OF THE HAMILTONIAN IN THE PRESENCE OF CONSTRAINTS [J].
CAWLEY, R .
PHYSICAL REVIEW LETTERS, 1979, 42 (07) :413-416
[16]   REINTERPRETATION OF JORDAN-BRANS-DICKE THEORY AND KALUZA-KLEIN COSMOLOGY [J].
CHO, YM .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3133-3136
[17]   SELF-DUAL FIELDS AS CHARGE-DENSITY SOLITONS - COMMENT [J].
COSTA, MEV ;
GIROTTI, HO .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1771-1771
[18]   Conformal transformations and conformal invariance in gravitation [J].
Dabrowski, Mariusz P. ;
Garecki, Janusz ;
Blaschke, David B. .
ANNALEN DER PHYSIK, 2009, 18 (01) :13-32
[19]  
Deruelle N, 2011, SPRINGER PROC PHYS, V137, P247
[20]   Various Hamiltonian formulations of f(R) gravity and their canonical relationships [J].
Deruelle, Nathalie ;
Sendouda, Yuuiti ;
Youssef, Ahmed .
PHYSICAL REVIEW D, 2009, 80 (08)