Jordan and Einstein frames from the perspective of ω =-3/2 Hamiltonian Brans-Dicke theory

被引:6
作者
Galaverni, Matteo [1 ,2 ]
Gionti, Gabriele [1 ,3 ,4 ]
机构
[1] Specola Vaticana Vatican Observ, Vatican, Vatican City St, Italy
[2] INAF OAS Bologna, Via Gobetti 101, I-40129 Bologna, Italy
[3] Univ Arizona, Vatican Observ Res Grp, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[4] INFN, Lab Nazionali Frascati, Via E Fermi 40, I-00044 Frascati, Italy
关键词
SELF-DUAL FIELDS; CANONICAL FORMALISM; MACHS PRINCIPLE; EQUIVALENCE; INVARIANCE; GRAVITY;
D O I
10.1103/PhysRevD.105.084008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carefully perform a Hamiltonian Dirac's constraint analysis of the omega = -3/2 Brans-Dicke theory with the Gibbons-Hawking-York boundary term. The Poisson brackets are computed via functional derivatives. After a brief summary of the results for the omega not equal -3/2 case [G. Gionti S. J., Canonical analysis of Brans-Dicke theory addresses Hamiltonian inequivalence between the Jordan and Einstein frames, Phys. Rev. D 103, 024022 (2021)] we derive all Hamiltonian Dirac's constraints and constraint algebra in both the Jordan and the Einstein frames. Confronting and contrasting Dirac's constraint algebra in both frames, it is shown that they are not equivalent. This highlights that the transformations from the Jordan to the Einstein frames are not Hamiltonian canonical transformations.
引用
收藏
页数:19
相关论文
共 60 条
[1]   Strong-coupled relativity without relativity [J].
Anderson, E .
GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (02) :255-276
[2]  
[Anonymous], 1992, Lect. Notes Phys. Monogr.
[3]   CANONICAL VARIABLES FOR GENERAL RELATIVITY [J].
ARNOWITT, R ;
DESER, S ;
MISNER, CW .
PHYSICAL REVIEW, 1960, 117 (06) :1595-1602
[4]   A question mark on the equivalence of Einstein and Jordan frames [J].
Banerjee, Narayan ;
Majumder, Barun .
PHYSICS LETTERS B, 2016, 754 :129-134
[5]   A brief note on Weyl frames and canonical transformations in geometrical scalar-tensor theories of gravity [J].
Barreto, A. B. ;
Pucheu, M. L. ;
Romero, C. .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
[6]   Dynamics of the generalized unimodular gravity theory [J].
Barvinsky, A. O. ;
Kolganov, N. ;
Kurov, A. ;
Nesterov, D. .
PHYSICAL REVIEW D, 2019, 100 (02)
[7]   Brans-Dicke theory in the local potential approximation [J].
Benedetti, Dario ;
Guarnieri, Filippo .
NEW JOURNAL OF PHYSICS, 2014, 16
[8]   Fluid-gravity correspondence in the scalar-tensor theory of gravity: (in)equivalence of Einstein and Jordan frames [J].
Bhattacharya, Krishnakanta ;
Majhi, Bibhas Ranjan ;
Singleton, Douglas .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
[9]   Noether and Abbott-Deser-Tekin conserved quantities in scalar-tensor theory of gravity both in Jordan and Einstein frames [J].
Bhattacharya, Krishnakanta ;
Das, Ashmita ;
Majhi, Bibhas Ranjan .
PHYSICAL REVIEW D, 2018, 97 (12)
[10]   Fresh look at the scalar-tensor theory of gravity in Jordan and Einstein frames from undiscussed standpoints [J].
Bhattacharya, Krishnakanta ;
Majhi, Bibhas Ranjan .
PHYSICAL REVIEW D, 2017, 95 (06)