A NOTE ON PETTY'S THEOREM

被引:3
作者
Marini, Michele [1 ]
De Philippis, Guido [2 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
Convex bodies; affine inequalities; Monge-Ampere; REGULARITY; EQUATION; BODY;
D O I
10.2996/kmj/1414674610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note we show how, by exploiting the regularity theory for solutions to the Monge-Ampere equation, Petty's equation characterizes ellipsoids without assuming any a priori regularity assumption.
引用
收藏
页码:586 / 594
页数:9
相关论文
共 21 条
[11]  
MINKOWSKI H, 1887, ALLGEMEINE LEHRSATZE, P103
[13]   AFFINE ISOPERIMETRIC PROBLEMS [J].
PETTY, CM .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1985, 440 :113-127
[14]  
Pogorelov A.V., 1972, GEOM DEDICATA, V1, P33, DOI 10.1007/BF00147379
[15]  
Pogorelov A.V., 1978, Scripta Series in Mathematics
[16]  
POGORELOV AV, 1984, DOKL AKAD NAUK SSSR+, V275, P26
[17]  
Santalo L. A., 1949, PORTUGAL MATH, V8, P155
[18]   A SIMPLE PROOF OF AN APPROXIMATION THEOREM OF MINKOWSKI,H. [J].
SCHMUCKENSCHLAEGER, M .
GEOMETRIAE DEDICATA, 1993, 48 (03) :319-324
[19]  
Schneider R, 2014, ENCYCLOP MATH APPL, V151
[20]  
Schneider R., 1978, ANN MAT PUR APPL, V116, P101