A NOTE ON PETTY'S THEOREM

被引:3
作者
Marini, Michele [1 ]
De Philippis, Guido [2 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
Convex bodies; affine inequalities; Monge-Ampere; REGULARITY; EQUATION; BODY;
D O I
10.2996/kmj/1414674610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note we show how, by exploiting the regularity theory for solutions to the Monge-Ampere equation, Petty's equation characterizes ellipsoids without assuming any a priori regularity assumption.
引用
收藏
页码:586 / 594
页数:9
相关论文
共 21 条
[2]   REGULARITY OF SOLUTION OF N-DIMENSIONAL MINKOWSKI PROBLEM [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (05) :495-516
[3]  
DEPHILIPPIS G, TO APPEAR IN BULL AM
[4]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[5]  
GUTIERREZ C, 2001, PROGRESS IN NONLINEA, V44
[6]  
Lutwak E., 1993, Handbook of Convex Geometry, P151, DOI [10.1016/B978-0-444-89596-7.50010-9, DOI 10.1016/B978-0-444-89596-7.50010-9]
[7]  
MAGNANINI R, TO APPEAR IN ANN MAT
[8]  
MAGNANINI R, 2013, PREPRINT
[9]   THE VOLUME OF THE INTERSECTION OF A CONVEX BODY WITH ITS TRANSLATES [J].
MEYER, M ;
REISNER, S ;
SCHMUCKENSCHLAGER, M .
MATHEMATIKA, 1993, 40 (80) :278-289
[10]   Capacity and surface [J].
Minkowski, H .
MATHEMATISCHE ANNALEN, 1903, 57 :447-495