DETECTING CHANGES OF RETROGRESSIVE THAW SLUMPS FROM SATELLITE IMAGES USING SIAMESE NEURAL NETWORK

被引:2
作者
Huang, Lingcao [1 ]
Liu, Lin [1 ]
机构
[1] Chinese Univ Hong Kong, Earth Syst Sci Programme, Hong Kong, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
Permafrost; Retrogressive Thaw Slumps; Change Detection; Deep Learning; Siamese Neural Network; PERMAFROST;
D O I
10.1109/IGARSS39084.2020.9323780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retrogressive thaw slumps (RTSs) are among the most dynamic landforms resulting from the thawing of ice-rich permafrost; but their distribution and evolution are poorly quantified. In this study, we propose a change detection algorithm based on the Siamese neural network, aiming to automatically detect RTS development from remote sensing images. Firstly, we derived training data based on multi-temporal Planet CubeSat images and polygons covering the RTS expanding areas. Secondly, we designed a simple network and trained it using a portion of the training data. Lastly, we predicted RTS expanding areas using the well-trained algorithm. Validating against ground truths shows that the precision, recall, and F1 score are 0.43, 0.96, and 0.59, respectively, indicating that the proposed change detection algorithm can identify RTS expanding areas correctly. Potentially, this method can be applied to larger areas and fill in a major knowledge gap about distribution and evolution of RTSs in permafrost areas.
引用
收藏
页码:3090 / 3093
页数:4
相关论文
共 23 条
[1]   Permafrost is warming at a global scale [J].
Biskaborn, Boris K. ;
Smith, Sharon L. ;
Noetzli, Jeannette ;
Matthes, Heidrun ;
Vieira, Goncalo ;
Streletskiy, Dmitry A. ;
Schoeneich, Philippe ;
Romanovsky, Vladimir E. ;
Lewkowicz, Antoni G. ;
Abramov, Andrey ;
Allard, Michel ;
Boike, Julia ;
Cable, William L. ;
Christiansen, Hanne H. ;
Delaloye, Reynald ;
Diekmann, Bernhard ;
Drozdov, Dmitry ;
Etzelmueller, Bernd ;
Grosse, Guido ;
Guglielmin, Mauro ;
Ingeman-Nielsen, Thomas ;
Isaksen, Ketil ;
Ishikawa, Mamoru ;
Johansson, Margareta ;
Johannsson, Halldor ;
Joo, Anseok ;
Kaverin, Dmitry ;
Kholodov, Alexander ;
Konstantinov, Pavel ;
Kroeger, Tim ;
Lambiel, Christophe ;
Lanckman, Jean-Pierre ;
Luo, Dongliang ;
Malkova, Galina ;
Meiklejohn, Ian ;
Moskalenko, Natalia ;
Oliva, Marc ;
Phillips, Marcia ;
Ramos, Miguel ;
Sannel, A. Britta K. ;
Sergeev, Dmitrii ;
Seybold, Cathy ;
Skryabin, Pavel ;
Vasiliev, Alexander ;
Wu, Qingbai ;
Yoshikawa, Kenji ;
Zheleznyak, Mikhail ;
Lantuit, Hugues .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]  
Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
[3]  
BURN CR, 1989, ARCTIC, V42, P31
[4]   CANADIAN LANDFORM EXAMPLES .17. RETROGRESSIVE THAW SLUMPS [J].
BURN, CR ;
LEWKOWICZ, AG .
CANADIAN GEOGRAPHER-GEOGRAPHE CANADIEN, 1990, 34 (03) :273-276
[5]  
Daudt RC, 2018, INT GEOSCI REMOTE SE, P2115, DOI 10.1109/IGARSS.2018.8518015
[6]   Happy Birthday - Advanced Materials Interfaces Turns One [J].
Gregory, Peter ;
Meskine, Hakim ;
Stass, Ingeborg .
ADVANCED MATERIALS INTERFACES, 2015, 2 (01)
[7]   Geospatial Object Detection in High Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network [J].
Guo, Wei ;
Yang, Wen ;
Zhang, Haijian ;
Hua, Guang .
REMOTE SENSING, 2018, 10 (01)
[8]   Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery [J].
Huang, Bo ;
Zhao, Bei ;
Song, Yimeng .
REMOTE SENSING OF ENVIRONMENT, 2018, 214 :73-86
[9]   Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images [J].
Huang, Lingcao ;
Luo, Jing ;
Lin, Zhanju ;
Niu, Fujun ;
Liu, Lin .
REMOTE SENSING OF ENVIRONMENT, 2020, 237
[10]   Automatic Mapping of Thermokarst Landforms from Remote Sensing Images Using Deep Learning: A Case Study in the Northeastern Tibetan Plateau [J].
Huang, Lingcao ;
Liu, Lin ;
Jiang, Liming ;
Zhang, Tingjun .
REMOTE SENSING, 2018, 10 (12)