Combined effect of edge roughness and phonon scattering on the electronic properties of ultra scaled graphene nano-ribbons

被引:4
作者
Akhoondali, Hossein [1 ]
Goharrizi, Arash Yazdanpanah [1 ]
Sharifi, Mohammad Javad [1 ]
机构
[1] Shahid Beheshti Univ, Fac Elect & Comp Engn, Tehran, Iran
关键词
Acoustic phonons; Optical phonons; Phonon scattering; Graphene nano-ribbon (GNR); Line-edge-roughness (LER); Non-equilibrium Green's function (NEGF);
D O I
10.1016/j.spmi.2014.07.045
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The effect of optical and acoustic phonon-scattering in the presence of line-edge-roughness (LER) on the electronic properties of ultra-scaled armchair graphene nano-ribbons (AGNRs) is investigated. Non-equilibrium Green's function formalism (NEGF) is employed using a Hamiltonian formed from tight bonding model with consideration of first and third nearest neighbors. The combined effect of phonons and line edge roughness on the transmission, transport gap, and conductance are studied for different roughness strengths and AGNR lengths. Results show edge roughness slightly reduces the onset of optical phonon emission, acoustic phonons reduce off-state conductance and optical phonons reduce on-state conductance. In both cases, the degree and behavior of reduction is totally dependent on the intensity of edge roughness. Also, in the longer AGNRs with high edge roughness intensity, phonons increase the transport gap. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:268 / 277
页数:10
相关论文
共 26 条
[1]   Phonon limited transport in graphene nanoribbon field effect transistors using full three dimensional quantum mechanical simulation [J].
Akhavan, Nima Dehdashti ;
Jolley, Gregory ;
Umana-Membreno, Gilberto A. ;
Antoszewski, Jarek ;
Faraone, Lorenzo .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
[2]   Modeling of nanoscale devices [J].
Anantram, M. P. ;
Lundstrom, Mark S. ;
Nikonov, Dmitri E. .
PROCEEDINGS OF THE IEEE, 2008, 96 (09) :1511-1550
[3]   Electron-phonon coupling is large for localized states [J].
Atta-Fynn, R ;
Biswas, P ;
Drabold, DA .
PHYSICAL REVIEW B, 2004, 69 (24) :245204-1
[4]   First-principles analysis of electron-phonon interactions in graphene [J].
Borysenko, K. M. ;
Mullen, J. T. ;
Barry, E. A. ;
Paul, S. ;
Semenov, Y. G. ;
Zavada, J. M. ;
Nardelli, M. Buongiorno ;
Kim, K. W. .
PHYSICAL REVIEW B, 2010, 81 (12)
[5]  
Datta S., 2013, Quantum Transport: atom to Transistor
[6]   Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons [J].
Evaldsson, M. ;
Zozoulenko, I. V. ;
Xu, Hengyi ;
Heinzel, T. .
PHYSICAL REVIEW B, 2008, 78 (16)
[7]   High-field transport in two-dimensional graphene [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
PHYSICAL REVIEW B, 2011, 84 (12)
[8]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762
[9]   Tight-binding energy dispersions of armchair-edge graphene nanostrips [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW B, 2008, 77 (11)
[10]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)