Brain Cancer Tumor Classification from Motion-Corrected MRI Images Using Convolutional Neural Network

被引:12
|
作者
Mengash, Hanan Abdullah [1 ]
Mahmoud, Hanan A. Hosni [2 ,3 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11671, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia
[3] Univ Alexandria, Fac Engn, Dept Comp & Syst Engn, Alexandria, Egypt
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2021年 / 68卷 / 02期
关键词
Classification; convolutional neural network; tumor classification; MRI; deep learning; k-fold cross classification;
D O I
10.32604/cmc.2021.016907
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detection of brain tumors in MRI images is the first step in brain cancer diagnosis. The accuracy of the diagnosis depends highly on the exper-tise of radiologists. Therefore, automated diagnosis of brain cancer from MRI is receiving a large amount of attention. Also, MRI tumor detection is usually followed by a biopsy (an invasive procedure), which is a medical procedure for brain tumor classification. It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures. Convolutional neural network (CNN) is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification. In this paper, a CNN-based tech-nique for brain tumor classification has been developed. The proposed CNN can distinguish between normal (no-cancer), astrocytoma tumors, gliomatosis cerebri tumors, and glioblastoma tumors. The implemented CNN was tested on MRI images that underwent a motion-correction procedure. The CNN was evaluated using two performance measurement procedures. The first one is a k-fold cross-validation testing method, in which we tested the dataset using k = 8, 10, 12, and 14. The best accuracy for this procedure was 96.26% when k = 10. To overcome the over-fitting problem that could be occurred in the k-fold testing method, we used a hold-out testing method as a second evaluation procedure. The results of this procedure succeeded in attaining 97.8% accuracy, with a specificity of 99.2% and a sensitivity of 97.32%. With this high accuracy, the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.
引用
收藏
页码:1551 / 1563
页数:13
相关论文
共 50 条
  • [1] Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network
    Kuraparthi, Swaraja
    Reddy, Madhavi K.
    Sujatha, C. N.
    Valiveti, Himabindu
    Duggineni, Chaitanya
    Kollati, Meenakshi
    Kora, Padmavathi
    Sravan, V
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1171 - 1179
  • [2] Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network
    Badza, Milica M.
    Barjaktarovic, Marko C.
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [3] Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
    Chelghoum, Rayene
    Ikhlef, Ameur
    Hameurlaine, Amina
    Jacquir, Sabir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 189 - 200
  • [4] Brain Tumor Classification Using MRI Images and Convolutional Neural Networks
    Hafeez, Muhammad Adeel
    Kayasandik, Cihan Bilge
    Dogan, Merve Yusra
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [5] Classification of Brain Tumours in MRI Images using a Convolutional Neural Network
    Gupta, Isha
    Singh, Swati
    Gupta, Sheifali
    Nayak, Soumya Ranjan
    CURRENT MEDICAL IMAGING, 2023, 20
  • [6] Study on Brain Tumor Classification Through MRI Images Using a Deep Convolutional Neural Network
    Sharma, Kirti
    Khanna, Ketna
    Gambhir, Sapna
    Gambhir, Mohit
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [7] Brain Tumor Detection using MRI Images and Convolutional Neural Network
    Lamrani, Driss
    Cherradi, Bouchaib
    El Gannour, Oussama
    Bouqentar, Mohammed Amine
    Bahatti, Lhoussain
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 452 - 460
  • [8] Brain tumor classification in MRI image using convolutional neural network
    Khan, Hassan Ali
    Jue, Wu
    Mushtaq, Muhammad
    Mushtaq, Muhammad Umer
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (05) : 6203 - 6216
  • [9] Brain Tumor Segmentation from MRI Images Using Handcrafted Convolutional Neural Network
    Ullah, Faizan
    Nadeem, Muhammad
    Abrar, Mohammad
    Al-Razgan, Muna
    Alfakih, Taha
    Amin, Farhan
    Salam, Abdu
    DIAGNOSTICS, 2023, 13 (16)
  • [10] Brain tumor MRI images identification and classification based on the recurrent convolutional neural network
    Vankdothu R.
    Hameed M.A.
    Measurement: Sensors, 2022, 24