CHIEF: Clustering With Higher-Order Motifs in Big Networks

被引:33
作者
Xia, Feng [1 ]
Yu, Shuo [2 ]
Liu, Chengfei [3 ]
Li, Jianxin [4 ]
Lee, Ivan [5 ]
机构
[1] Federat Univ Australia, Sch Engn IT & Phys Sci, Ballarat, Vic 3353, Australia
[2] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[3] Swinburne Univ Technol, Dept Comp Sci & Software Engn, Melbourne, Vic 3122, Australia
[4] Deakin Univ, Sch IT, Melbourne, Vic 3125, Australia
[5] Univ South Australia, STEM, Adelaide, SA 5001, Australia
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2022年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
Higher-order motifs; social networks; motif clustering; big networks; SOCIAL NETWORKS; ALGORITHMS; MECHANISM; INTERNET; THINGS;
D O I
10.1109/TNSE.2021.3108974
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Clustering network vertices is an enabler of various applications such as social computing and Internet of Things. However, challenges arise for clustering when networks increase in scale. This paper proposes CHIEF (Clustering with Higher-ordEr motiFs), a solution which consists of two motif clustering techniques: standard acceleration CHIEF-ST and approximate acceleration CHIEF-At'. Both algorithms firstly find the maximal k-edge-connected subgraphs within the target networks to lower the network scale by optimizing the network structure with maximal k-edge-connected subgraphs, and then use heterogeneous four-node motifs clustering in higher-order dense networks. For CHIEF-ST, we illustrate that all target motifs will be kept after this procedure when the minimum node degree of the target motif is equal or greater than k. For CHIEF-AP, we prove that the eigenvalues of the adjacency matrix and the Laplacian matrix are relatively stable after this step. CHIEF offers an improved efficiency of motif clustering for big networks, and it verifies higher-order motif significance. Experiments on real and synthetic networks demonstrate that the proposed solutions outperform baseline approaches in large network analysis, and higher-order motifs outperform traditional triangle motifs in clustering.
引用
收藏
页码:990 / 1005
页数:16
相关论文
共 49 条
[1]   Temporal vertex cover with a sliding time window [J].
Akrida, Eleni C. ;
Mertzios, George B. ;
Spirakis, Paul G. ;
Zarnaraev, Viktor .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 107 :108-123
[2]   Hierarchical Clustering for Smart Meter Electricity Loads Based on Quantile Autocovariances [J].
Alonso, Andres M. ;
Nogales, Francisco J. ;
Ruiz, Carlos .
IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (05) :4522-4530
[3]   Big networks: A survey [J].
Bedru, Hayat Dino ;
Yu, Shuo ;
Xiao, Xinru ;
Zhang, Da ;
Wan, Liangtian ;
Guo, He ;
Xia, Feng .
COMPUTER SCIENCE REVIEW, 2020, 37
[4]   Higher-order organization of complex networks [J].
Benson, Austin R. ;
Gleich, David F. ;
Leskovec, Jure .
SCIENCE, 2016, 353 (6295) :163-166
[5]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[6]   The four dimensions of social network analysis: An overview of research methods, applications, and software tools [J].
Camacho, David ;
Panizo-LLedot, Angel ;
Bello-Orgaz, Gema ;
Gonzalez-Pardo, Antonio ;
Cambria, Erik .
INFORMATION FUSION, 2020, 63 :88-120
[7]   A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis [J].
Fahad, Adil ;
Alshatri, Najlaa ;
Tari, Zahir ;
Alamri, Abdullah ;
Khalil, Ibrahim ;
Zomaya, Albert Y. ;
Foufou, Sebti ;
Bouras, Abdelaziz .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014, 2 (03) :267-279
[8]   Local Motif Clustering on Time-Evolving Graphs [J].
Fu, Dongqi ;
Zhou, Dawei ;
He, Jingrui .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :390-400
[9]   Grid based clustering for satisfiability solving [J].
Hireche, Celia ;
Drias, Habiba ;
Moulai, Hadjer .
APPLIED SOFT COMPUTING, 2020, 88
[10]  
Holberg W., 1992, DISCRETE MATH, V109, P133