Sensing and Exploiting Static Femto-Newton Optical Forces by a Nanofiber with White-Light Interferometry

被引:13
作者
Yu, Jianhui [1 ,2 ]
Chen, Liheng [1 ]
Dong, Huazhuo [2 ]
Liu, Xingyu [2 ]
Huang, Hankai [2 ]
Qiu, Weiqia [2 ]
Huang, Shiqing [3 ]
Zhu, Wenguo [1 ,2 ]
Lu, Huihui [1 ,2 ]
Tang, Jieyuan [2 ]
Xiao, Yi [1 ,2 ]
Zhong, Yongchun [1 ,2 ]
Luo, Yunhan [1 ,2 ]
Zhang, Jun [1 ,2 ]
Chen, Zhe [1 ,2 ]
机构
[1] Jinan Univ, Guangdong Higher Educ Inst, Key Lab Optoelect Informat & Sensing Technol, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Guangdong Prov Key Lab Opt Fiber Sensing & Commun, Guangzhou 510632, Guangdong, Peoples R China
[3] Jinan Univ, MOE Key Lab Disaster Forecast & Control Engn, Guangzhou 510632, Guangdong, Peoples R China
来源
ACS PHOTONICS | 2018年 / 5卷 / 08期
基金
中国国家自然科学基金;
关键词
femto-Newton optical force; all-optical control; linear momentum exchange; nanofiber; white-light interferometry; optomechanics; NANOPHOTONIC WAVE-GUIDES; RADIATION PRESSURE; MOMENTUM; CAVITY; FIBER; OPTOMECHANICS; RESONANCES; MICROSCOPY; FILTER;
D O I
10.1021/acsphotonics.8b00450
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Optical force determines the fundamental process of momentum exchange between light and matter. However, owing to the weak mechanical effect of the optical force and relatively large stiffness of optomechanical devices, pico-Newton (10(-12) N) optical force is required to manipulate micro/nanoparticles and the optical response of optical devices. It is still extremely challenging to sense static femto-Newton (fN) optical forces and exploit such forces to actuate micro-optical devices. Here, using a tapered nanofiber (TNF) with a high mechanical efficiency of 2.13 nm/fN, a sensitive and cost-effective scheme is demonstrated to generate, sense, and exploit fN optical force. Strong light coupling from the TNF to a glass substrate can result in a fN repulsive optical force, which can induce a TNF deformation of up to 425.6 nm. Such a large deformation allows white-light interferometry to detect a fN static optical force (5.2 fN). Moreover, the high optomechanical efficiency (15.6 nm/mu W) allows us to all-optically control the signal power at values ranging from 0.09 to 17.1 mu W with only microwatt pump power, which paves the way toward microwatt and fN-optical-force optomechanical devices.
引用
收藏
页码:3205 / 3213
页数:17
相关论文
共 54 条
  • [1] [Anonymous], 2005, Computational Electrodynamics: the Finite-Difference Time-Domain Method
  • [2] OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA
    ASHKIN, A
    DZIEDZIC, JM
    [J]. SCIENCE, 1987, 235 (4795) : 1517 - 1520
  • [3] The enigma of optical momentum in a medium
    Barnett, Stephen M.
    Loudon, Rodney
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1914): : 927 - 939
  • [4] EXPERIMENTS IN PHENOMENOLOGICAL ELECTRODYNAMICS AND THE ELECTROMAGNETIC ENERGY-MOMENTUM TENSOR
    BREVIK, I
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (03): : 133 - 201
  • [5] Cleland A. N, 2013, FDN NANOMECHANICS SO, P233
  • [6] Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions
    de Oteyza, Dimas G.
    Gorman, Patrick
    Chen, Yen-Chia
    Wickenburg, Sebastian
    Riss, Alexander
    Mowbray, Duncan J.
    Etkin, Grisha
    Pedramrazi, Zahra
    Tsai, Hsin-Zon
    Rubio, Angel
    Crommie, Michael F.
    Fischer, Felix R.
    [J]. SCIENCE, 2013, 340 (6139) : 1434 - 1437
  • [7] Brillouin-scattering-induced transparency and non-reciprocal light storage
    Dong, Chun-Hua
    Shen, Zhen
    Zou, Chang-Ling
    Zhang, Yan-Lei
    Fu, Wei
    Guo, Guang-Can
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces
    Eichenfield, Matt
    Michael, Christopher P.
    Perahia, Raviv
    Painter, Oskar
    [J]. NATURE PHOTONICS, 2007, 1 (07) : 416 - 422
  • [9] A picogram- and nanometre-scale photonic-crystal optomechanical cavity
    Eichenfield, Matt
    Camacho, Ryan
    Chan, Jasper
    Vahala, Kerry J.
    Painter, Oskar
    [J]. NATURE, 2009, 459 (7246) : 550 - U79
  • [10] Griffiths D. J, 2013, INTRO ELECTRODYNAMIC, P360