The variable precision rough set model for data mining in inconsistent information system

被引:0
作者
Zhou, QM [1 ]
Yin, CB
Li, YS
机构
[1] Univ Karlsruhe, Inst Comp Applicat Planning & Design, D-76128 Karlsruhe, Germany
[2] Univ Karlsruhe, Inst Prod Dev, D-76128 Karlsruhe, Germany
[3] Nanjing Univ Technol, Coll Informat Sci & Engn, Nanjing 210009, Peoples R China
[4] Nanjing Univ Technol, Coll Mech & Power Engn, Nanjing 210009, Peoples R China
来源
CONTENT COMPUTING, PROCEEDINGS | 2004年 / 3309卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The variable precision rough set (VPRS) model is an extension of original rough set model. For inconsistent information system, the VPRS model allows a flexible approximation boundary region by a precision variable. This paper is focused on data mining in inconsistent information system using the VPRS model. A method based on VPRS model is proposed to apply to data mining for inconsistent information system. By our method the deterministic and probabilistic classification rules are acquired from the inconsistent information system. An example is given to show that the method of data mining for inconsistent information system is effective.
引用
收藏
页码:285 / 290
页数:6
相关论文
共 11 条
[1]   Discovering rules for water demand prediction: An enhanced rough-set approach (Reprinted from Proceedings of the International Joint Conference on Artificial Intelligence) [J].
An, AJ ;
Shan, N ;
Chan, C ;
Cercone, N ;
Ziarko, W .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1996, 9 (06) :645-653
[2]   Reducts within the variable precision rough sets model: A further investigation [J].
Beynon, M .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (03) :592-605
[3]  
BEYNON M, 2001, LNAI 2005, P114
[4]  
Katzberg J. D., 1996, Fundamenta Informaticae, V27, P155
[5]   Approaches to knowledge reduction based on variable precision rough set model [J].
Mi, JS ;
Wu, WZ ;
Zhang, WX .
INFORMATION SCIENCES, 2004, 159 (3-4) :255-272
[6]   ROUGH SETS [J].
PAWLAK, Z .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1982, 11 (05) :341-356
[7]  
Pawlak Z., 1991, Rough sets: Theoretical aspects of reasoning about data, DOI DOI 10.1007/978-94-011-3534-4
[8]  
Skowron A., 1992, Handbook of Applications and Advances of the Rough Sets Theory, DOI DOI 10.1007/978-94-015-7975-9_21
[9]  
WANG GY, 2001, LECT NOTES ARTIF INT, V2005, P370
[10]  
ZHANG WX, 2001, ROUGH SET THEORY ITS