Electrons under the dominant action of shock-electric fields

被引:10
作者
Fahr, Hans J. [1 ]
Verscharen, Daniel [2 ]
机构
[1] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[2] Univ New Hampshire, Ctr Space Sci, 8 Coll Rd, Durham, NH 03824 USA
关键词
plasmas; Sun: heliosphere; solar wind; WIND TERMINATION SHOCK; SOLAR-WIND; COLLISIONLESS-SHOCK; PLASMA; DOWNSTREAM;
D O I
10.1051/0004-6361/201527901
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a fast magnetosonic multifluid shock as a representation of the solar-wind termination shock. We assume the action of the transition happens in a three-step process: In the first step, the upstream supersonic solar-wind plasma is subject to a strong electric field that flashes up on a small distance scale Delta z similar or equal to U-1/Omega(e) (first part of the transition layer), where Omega(e) is the electron gyro-frequency and U-1 is the upstream speed. This electric field both decelerates the supersonic ion flow and accelerates the electrons up to high velocities. In this part of the transition region, the electric forces connected with the deceleration of the ion flow strongly dominate over the Lorentz forces. We, therefore, call this part the demagnetization region. In the second phase, Lorentz forces due to convected magnetic fields compete with the electric field, and the highly anisotropic and energetic electron distribution function is converted into a shell distribution with energetic shell electrons storing about 3/4 of the upstream ion kinetic energy. In the third phase, the plasma particles thermalize due to the relaxation of free energy by plasma instabilities. The first part of the transition region opens up a new thermodynamic degree of freedom never before taken into account for the electrons, since the electrons are usually considered to be enslaved to follow the behavior of the protons in all velocity moments like density, bulk velocity, and temperature. We show that electrons may be the downstream plasma fluid that dominates the downstream plasma pressure.
引用
收藏
页数:4
相关论文
共 20 条
[1]   The role of solar wind electrons at the solar wind termination shock [J].
Chalov, S. V. ;
Fahr, H. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 433 (01) :L40-L43
[2]   Mediation of the solar wind termination shock by non-thermal ions [J].
Decker, R. B. ;
Krimigis, S. M. ;
Roelof, E. C. ;
Hill, M. E. ;
Armstrong, T. P. ;
Gloeckler, G. ;
Hamilton, D. C. ;
Lanzerotti, L. J. .
NATURE, 2008, 454 (7200) :67-70
[3]   Entropy generation at multi-fluid magnetohydrodynamic shocks with emphasis to the solar wind termination shock [J].
Fahr, H. -J. ;
Siewert, M. .
ASTRONOMY & ASTROPHYSICS, 2015, 576
[4]   Revisiting the role of magnetic moments in heliospheric plasmas [J].
Fahr, H. -J. ;
Siewert, M. .
ASTRONOMY & ASTROPHYSICS, 2013, 552
[5]   Phasespace transport of a quasi-neutral multi-fluid plasma over the solar wind MHD termination shock [J].
Fahr, H. -J. ;
Siewert, M. ;
Chashei, I. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 341 (02) :265-276
[6]   Isotropic ion distribution functions triggered by consecutive solar wind bulk velocity jumps: a new equilibrium state [J].
Fahr, H. -J. ;
Siewert, M. .
ASTRONOMY & ASTROPHYSICS, 2011, 527
[7]   Upstream ions converting into downstream pick-up ions: the effect of shock-decelerated frozen-in fields [J].
Fahr, H. -J. ;
Siewert, M. .
ASTRONOMY & ASTROPHYSICS, 2010, 512
[8]  
Fahr H.-J., 2007, ASTRA, V3, P21, DOI [10.5194/astra-3-21-2007, DOI 10.5194/ASTRA-3-21-2007]
[9]   The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons? [J].
Fahr, Hans J. ;
Richardson, John D. ;
Verscharen, Daniel .
ASTRONOMY & ASTROPHYSICS, 2015, 579
[10]   THE ADIABATIC ENERGY CHANGE OF PLASMA ELECTRONS AND THE FRAME DEPENDENCE OF THE CROSS-SHOCK POTENTIAL AT COLLISIONLESS MAGNETOSONIC SHOCK-WAVES [J].
GOODRICH, CC ;
SCUDDER, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1984, 89 (NA8) :6654-6662