The structure of the singular set in the thin obstacle problem for degenerate parabolic equations

被引:16
作者
Banerjee, Agnid [1 ]
Daniel, Donatelia [2 ]
Garofalo, Nicola [3 ]
Petrosyan, Arshak [4 ]
机构
[1] TIFR CAM, Bangalore 560065, Karnataka, India
[2] Arizona State Univ, Sch Math & Stat Sci, 900 S Palm, Walk Tempe, AZ 85281 USA
[3] Univ Padua, Dipartimento Ingn Civile Edile & Ambientale DICEA, I-35131 Padua, Italy
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
FREE-BOUNDARY; EXTENSION PROBLEM; REGULARITY; MONOTONICITY;
D O I
10.1007/s00526-021-01938-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the singular set in the thin obstacle problem for degenerate parabolic equations with weight vertical bar y vertical bar(a) for a is an element of (-1, 1). Such problem arises as the local extension of the obstacle problem for the fractional heat operator (partial derivative(t) - Delta(x))(s) for s is an element of (0, 1). Our main result establishes the complete structure and regularity of the singular set of the free boundary. To achieve it, we prove Almgren-Poon, Weiss, and Monneau type monotonicity formulas which generalize those for the case of the heat equation (a = 0).
引用
收藏
页数:52
相关论文
共 20 条
[1]  
Athanasopoulos I, 2019, ANN SCUOLA NORM-SCI, V19, P781
[2]   On the regularity of the non-dynamic parabolic fractional obstacle problem [J].
Athanasopoulos, Ioannis ;
Caffarelli, Luis ;
Milakis, Emmanouil .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (06) :2614-2647
[3]   Monotonicity of generalized frequencies and the strong unique continuation property for fractional parabolic equations [J].
Banerjee, Agnid ;
Garofalo, Nicola .
ADVANCES IN MATHEMATICS, 2018, 336 :149-241
[4]   The two membranes problem for different operators [J].
Caffarelli, L. ;
De Silva, D. ;
Savin, O. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04) :899-932
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[7]  
Chiarenza Filippo, 1985, REND SEMIN MAT U PAD, V73, P179
[8]   Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem [J].
Danielli, Donatella ;
Garofalo, Nicola ;
Petrosyan, Arshak ;
To, Tung .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1181) :1-+
[9]  
Danielli D, 2008, METHODS APPL ANAL, V15, P121
[10]  
Duvaut, 1972, INEQUATIONS MECANIQU, V21