On empirical Bayes testing for a location parameter in a shifted gamma distribution

被引:5
作者
Liang, TC [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
asymptotically optimal; empirical Bayes testing; rate of convergence; regret;
D O I
10.1081/STA-120017803
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a location parameter 0 in a. shifted gamma distribution having pdff(x/theta)=(x-theta)(alpha-1)exp{-(x-theta)}/Gamma(alpha)I-(theta,I- infinity)(x), where alpha greater than or equal to 2 is the fixed shape parameter. We study the two-action problem of testing H-0: theta < theta(0) against H-1 : theta > theta(0) using the empirical Bayes approach. An empirical Bayes test delta(n)* is constructed. Under some mild conditions, delta(n)(*) is shown to be asymptotically optimal at a rate of order O(n(-2(alpha-1)/(2alpha-1))) for alphagreater than or equal to2, where n is the number of past data available when the current decision problem is considered. The achieved rate of delta(n)* much improves the existing result in the literature.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 14 条