New chaotic PSO-based neural network predictive control for nonlinear process

被引:148
作者
Song, Ying [1 ]
Chen, Zengqiang [1 ]
Yuan, Zhuzhi [1 ]
机构
[1] Nankai Univ, Dept Automat, Tianjin 300071, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2007年 / 18卷 / 02期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
neural network (NN); nonlinear plant; particle swarm optimization (PSO); predictive control; tent-map chaos;
D O I
10.1109/TNN.2006.890809
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, a novel nonlinear neural network (NN) predictive control strategy based on the new tent-map chaotic particle swarm optimization (TCPSO) is presented. The TCPSO incorporating tent-map chaos, which can avoid trapping to local minima and improve the searching performance of standard particle swarm optimization (PSO), is applied to perform the nonlinear optimization to enhance the convergence and accuracy. Numerical simulations of two benchmark functions are used to test the performance of TCPSO. Furthermore, simulation on a nonlinear plant is given to illustrate the effectiveness of the proposed control scheme.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 22 条
[1]  
Angeline P. J., 1998, Evolutionary Programming VII. 7th International Conference, EP98. Proceedings, P601, DOI 10.1007/BFb0040811
[2]  
[Anonymous], 1990, IEEE T NEURAL NETWOR
[3]   GENERALIZED PREDICTIVE CONTROL .1. THE BASIC ALGORITHM [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :137-148
[4]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[5]   Greenhouse air temperature predictive control using the particle swarm optimisation algorithm [J].
Coelho, JP ;
Oliveira, PBD ;
Cunha, JB .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2005, 49 (03) :330-344
[6]   Sensitivity to noise in bidirectional associative memory (BAM) [J].
Du, SZ ;
Chen, ZQ ;
Yuan, ZZ ;
Zhang, XH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04) :887-898
[7]  
Goldberg D.E, 1989, GENETIC ALGORITHMS S
[8]   Nonlinear model predictive control: current status and future directions [J].
Henson, MA .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 23 (02) :187-202
[9]   Review of the applications of neural networks in chemical process control - simulation and online implementation [J].
Hussain, MA .
ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1999, 13 (01) :55-68
[10]  
IQBAL M, 2005, EVOL ARTIF, P1