On convex limit sets and Brownian motion

被引:2
|
作者
Kuelbs, J
Ledoux, M
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Toulouse 3, Dept Math, Lab Stat & Probabil, F-31062 Toulouse, France
基金
美国国家科学基金会;
关键词
Brownian motion; Brownian sheet; convex hull for curves in R-d; extended convex hulls; law of the iterated logarithm in Banach spaces;
D O I
10.1023/A:1022640007525
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove limsup results for nonnegative functionals of convex sets determined by normalized Brownian paths in Banach spaces. This continues the interesting investigation of D. Khoshnevisan into this area, and relates to some classical unsolved isoperimetric problems for the convex hull of curves in R-d. Section 4 contains the solution of a problem similar to these classical problems.
引用
收藏
页码:461 / 492
页数:32
相关论文
共 50 条
  • [1] On Convex Limit Sets and Brownian Motion
    J. Kuelbs
    M. Ledoux
    Journal of Theoretical Probability, 1998, 11 : 461 - 492
  • [2] The Mean Perimeter of Some Random Plane Convex Sets Generated by a Brownian Motion
    Philippe Biane
    Gérard Letac
    Journal of Theoretical Probability, 2011, 24 : 330 - 341
  • [3] The Mean Perimeter of Some Random Plane Convex Sets Generated by a Brownian Motion
    Biane, Philippe
    Letac, Gerard
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) : 330 - 341
  • [4] Convex Hull of Brownian Motion and Brownian Bridge
    Sebek, Stjepan
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (04)
  • [5] Brownian Motion on Cantor Sets
    Golmankhaneh, Ali Khalili
    Ashrafi, Saleh
    Baleanu, Dumitru
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (3-4) : 275 - 281
  • [6] BROWNIAN-MOTION WITH NEGATIVE DRIFT AND CONVEX LEVEL SETS IN SPACE-TIME
    BORELL, C
    PROBABILITY THEORY AND RELATED FIELDS, 1991, 87 (03) : 403 - 409
  • [7] Sets avoided by Brownian motion
    Adelman, O
    Burdzy, K
    Pemantle, R
    ANNALS OF PROBABILITY, 1998, 26 (02): : 429 - 464
  • [8] Convex hull of a Brownian motion in confinement
    Chupeau, Marie
    Benichou, Olivier
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [9] Brownian motion on a manifold as a limit of Brownian motions with drift
    P. Yu. Tarasenko
    Russian Journal of Mathematical Physics, 2007, 14 : 505 - 508
  • [10] Brownian motion on a manifold as a limit of Brownian motions with drift
    Tarasenko, P. Yu.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (04) : 505 - 508