On convex limit sets and Brownian motion

被引:2
作者
Kuelbs, J
Ledoux, M
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Toulouse 3, Dept Math, Lab Stat & Probabil, F-31062 Toulouse, France
基金
美国国家科学基金会;
关键词
Brownian motion; Brownian sheet; convex hull for curves in R-d; extended convex hulls; law of the iterated logarithm in Banach spaces;
D O I
10.1023/A:1022640007525
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove limsup results for nonnegative functionals of convex sets determined by normalized Brownian paths in Banach spaces. This continues the interesting investigation of D. Khoshnevisan into this area, and relates to some classical unsolved isoperimetric problems for the convex hull of curves in R-d. Section 4 contains the solution of a problem similar to these classical problems.
引用
收藏
页码:461 / 492
页数:32
相关论文
共 13 条
[1]  
[Anonymous], MATEMATICHESKII SBOR
[2]  
BURAGO YD, 1980, GRUNDLEHREN MATH WIS
[3]  
EGGLETSON HG, 1958, CONVEXITY
[4]   LOCAL ASYMPTOTIC LAWS FOR THE BROWNIAN CONVEX-HULL [J].
KHOSHNEVISAN, D .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (03) :377-392
[5]  
KREIN MG, 1977, AM MATH SOC TRANSL M
[6]   SAMPLE PATH BEHAVIOR FOR BROWNIAN-MOTION IN BANACH-SPACES [J].
KUELBS, J .
ANNALS OF PROBABILITY, 1975, 3 (02) :247-261
[7]   LAW OF ITERATED LOGARITHM FOR BROWNIAN-MOTION IN A BANACH-SPACE [J].
KUELBS, J ;
LEPAGE, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 185 (458) :253-264
[8]   METRIC ENTROPY AND THE SMALL BALL PROBLEM FOR GAUSSIAN MEASURES [J].
KUELBS, J ;
LI, WV .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 116 (01) :133-157
[9]  
LEVY P, 1955, REND CIRC MAT PALERM, V4, P337
[10]  
NUDELMANN AA, 1975, MATH USSR SB, V25, P276