Topological Hochschild homology of Thom spectra which are E∞-ring spectra

被引:12
|
作者
Blumberg, Andrew J. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
ALGEBRAIC K-THEORY; LOCALIZATION; COHOMOLOGY; CATEGORY;
D O I
10.1112/jtopol/jtq017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E-infinity classifying map X -> BG for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E-infinity-ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result THH(M f) similar or equal to eq Mf boolean AND BX+, which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A(infinity) map, provided that the induced multiplication on Mf extends to an E-infinity-ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).
引用
收藏
页码:535 / 560
页数:26
相关论文
共 50 条
  • [11] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [12] Topological Hochschild homology and higher characteristics
    Campbell, Jonathan A.
    Ponto, Kate
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (02): : 965 - 1017
  • [13] Units of ring spectra, orientations, and Thom spectra via rigid infinite loop space theory
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    Hopkins, Michael J.
    Rezk, Charles
    JOURNAL OF TOPOLOGY, 2014, 7 (04) : 1077 - 1117
  • [14] Homology of En ring spectra and iterated THH
    Basterra, Maria
    Mandell, Michael A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (02): : 939 - 981
  • [15] Localization sequences for logarithmic topological Hochschild homology
    Rognes, John
    Sagave, Steffen
    Schlichtkrull, Christian
    MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1349 - 1398
  • [16] Real topological Hochschild homology and the Segal conjecture
    Hahn, Jeremy
    Wilson, Dylan
    ADVANCES IN MATHEMATICS, 2021, 387
  • [17] On higher topological Hochschild homology of rings of integers
    Dundas, Bjorn Ian
    Lindenstrauss, Ayelet
    Richter, Birgit
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 489 - 507
  • [18] Topological Hochschild homology and the Bass trace conjecture
    Berrick, A. J.
    Hesselholt, Lars
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 169 - 185
  • [19] Some recent advances in topological Hochschild homology
    Mathew, Akhil
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (01) : 1 - 44
  • [20] The cotangent complex and Thom spectra
    Rasekh, Nima
    Stonek, Bruno
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2020, 90 (02): : 229 - 252