Topological Hochschild homology of Thom spectra which are E∞-ring spectra

被引:12
作者
Blumberg, Andrew J. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
ALGEBRAIC K-THEORY; LOCALIZATION; COHOMOLOGY; CATEGORY;
D O I
10.1112/jtopol/jtq017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E-infinity classifying map X -> BG for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E-infinity-ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result THH(M f) similar or equal to eq Mf boolean AND BX+, which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A(infinity) map, provided that the induced multiplication on Mf extends to an E-infinity-ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).
引用
收藏
页码:535 / 560
页数:26
相关论文
共 36 条
[1]   Algebraic K-theory of topological K-theory [J].
Ausoni, C ;
Rognes, J .
ACTA MATHEMATICA, 2002, 188 (01) :1-39
[2]   Homology and cohomology of E∞ ring spectra [J].
Basterra, M ;
Mandell, MA .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) :903-944
[3]   Andre-Quillen cohomology of commutative S-algebras [J].
Basterra, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 144 (02) :111-143
[4]   Topological Hochschild homology of Thom spectra and the free loop space [J].
Blumberg, Andrew J. ;
Cohen, Ralph L. ;
Schlichtkrull, Christian .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :1165-1242
[5]   HOMOTOPY-EVERYTHING H-SPACES [J].
BOARDMAN, JM ;
VOGT, RM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (06) :1117-+
[6]   THE CYCLOTOMIC TRACE AND ALGEBRAIC K-THEORY OF SPACES [J].
BOKSTEDT, M ;
HSIANG, WC ;
MADSEN, I .
INVENTIONES MATHEMATICAE, 1993, 111 (03) :465-540
[7]  
BOKSTEDT M, 1991, TOPOLOGICAL HOCHSCHI
[8]  
Borceux F., 1994, HDB CATEGORICAL ALGE, V2
[9]   Topological Hochschild homology of Z/pn [J].
Brun, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (01) :29-76
[10]   K(Z,0) AND K(Z2,0) AS THOM SPECTRA [J].
COHEN, FR ;
MAY, JP ;
TAYLOR, LR .
ILLINOIS JOURNAL OF MATHEMATICS, 1981, 25 (01) :99-106