Topological Hochschild homology of Thom spectra which are E∞-ring spectra

被引:12
|
作者
Blumberg, Andrew J. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
ALGEBRAIC K-THEORY; LOCALIZATION; COHOMOLOGY; CATEGORY;
D O I
10.1112/jtopol/jtq017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E-infinity classifying map X -> BG for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E-infinity-ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result THH(M f) similar or equal to eq Mf boolean AND BX+, which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A(infinity) map, provided that the induced multiplication on Mf extends to an E-infinity-ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).
引用
收藏
页码:535 / 560
页数:26
相关论文
共 50 条
  • [1] Higher topological Hochschild homology of Thom spectra
    Schlichtkrull, Christian
    JOURNAL OF TOPOLOGY, 2011, 4 (01) : 161 - 189
  • [2] GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY
    Basu, Samik
    Sagave, Steffen
    Schlichtkrull, Christian
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (01) : 21 - 64
  • [3] Topological Hochschild homology of Thom spectra and the free loop space
    Blumberg, Andrew J.
    Cohen, Ralph L.
    Schlichtkrull, Christian
    GEOMETRY & TOPOLOGY, 2010, 14 (02) : 1165 - 1242
  • [4] Computational tools for twisted topological Hochschild homology of equivariant spectra
    Adamyk, Katharine
    Gerhardt, Teena
    Hess, Kathryn
    Klang, Inbar
    Kong, Hana Jia
    TOPOLOGY AND ITS APPLICATIONS, 2022, 316
  • [5] Towards topological Hochschild homology of Johnson-Wilson spectra
    Ausoni, Christian
    Richter, Birgit
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (01): : 375 - 393
  • [6] Topological Hochschild homology of truncated Brown-Peterson spectra, I
    Angelini-Knoll, Gabriel
    Culver, Dominic Leon
    Honing, Eva
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (05): : 2509 - 2536
  • [7] Homotopy completion and topological Quillen homology of structured ring spectra
    Harper, John E.
    Hess, Kathryn
    GEOMETRY & TOPOLOGY, 2013, 17 (03) : 1325 - 1416
  • [8] Localization theorems in topological Hochschild homology and topological cyclic homology
    Blumberg, Andrew J.
    Mandell, Michael A.
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 1053 - 1120
  • [9] THOM SPECTRA THAT ARE SYMMETRIC SPECTRA
    Schlichtkrull, Christian
    DOCUMENTA MATHEMATICA, 2009, 14 : 699 - 748
  • [10] TOPOLOGICAL HOCHSCHILD HOMOLOGY OF AS A MODULE
    Basu, Samik
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2017, 19 (01) : 253 - 280