A note on radial basis function interpolant limits

被引:15
作者
Buhmann, Martin D. [1 ]
Dinew, Slawomir [2 ]
Larsson, Elisabeth [3 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Jagiellonian Univ, Dept Math, PL-30059 Krakow, Poland
[3] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
radial basis function; interpolation; limit; divergence; MULTIVARIATE INTERPOLATION;
D O I
10.1093/imanum/drn051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis functions (RBFs) are very useful in multivariate interpolation because of their ability to produce highly accurate results for scattered data. Many of them, especially the Gaussian RBF and the multiquadric RBF, contain parameters that need to be adjusted in order to improve the approximations. In fact, it is often of interest to let the parameters tend to certain limits. Here we study if and when the limits of RBF interpolants with parameters exist. Mainly, the dependence of the limit on the properties of the radial functions and on the geometries of the data points is investigated, and some examples are provided.
引用
收藏
页码:543 / 554
页数:12
相关论文
共 15 条
[1]  
BOUHAMIDI A, 2006, HABILITATION
[2]   SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION [J].
BUHMANN, M ;
DYN, N .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 :319-333
[3]  
Buhmann M.D., 2003, C MO AP C M, V12, P259, DOI 10.1017/CBO9780511543241
[4]  
Buhmann MD, 2007, COMMUN PUR APPL ANAL, V6, P569
[5]   MULTIPLY MONOTONE-FUNCTIONS FOR CARDINAL INTERPOLATION [J].
BUHMANN, MD ;
MICCHELLI, CA .
ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (03) :358-386
[6]   On interpolation by radial polynomials [J].
de Boor, C .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) :143-153
[7]   Interpolation in the limit of increasingly flat radial basis functions [J].
Driscoll, TA ;
Fornberg, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :413-422
[8]  
Fasshauer G.E., 2007, Meshfree Approximations Methods with Matlab
[9]  
Fornberg B, 2004, COMPUT MATH APPL, V47, P37, DOI [10.1016/S0898-1221(04)90004-1, 10.1016/S0898-1221(03)00449-8]
[10]   Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions [J].
Larsson, E ;
Fornberg, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :103-130