A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem

被引:193
作者
Gibou, F
Fedkiw, R
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jcp.2004.07.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we first describe a fourth order accurate finite difference discretization for both the Laplace equation and the heat equation with Dirichlet boundary conditions on irregular domains. In the case of the heat equation we use an implicit discretization in time to avoid the stringent time step restrictions associated with requirements for explicit schemes. We then turn our focus to the Stefan problem and construct a third order accurate method that also includes an implicit time discretization. Multidimensional computational results are presented to demonstrate the order accuracy of these numerical methods. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:577 / 601
页数:25
相关论文
共 35 条
[21]  
LIU XD, 1996, J COMPUT PHYS, V126, P200
[22]  
MANTEUFFEL TA, 1986, MATH COMPUT, V47, P511, DOI 10.1090/S0025-5718-1986-0856700-3
[23]  
Osher S., 2002, LEVEL SET METHODS DY
[24]   NUMERICAL-ANALYSIS OF BLOOD-FLOW IN HEART [J].
PESKIN, CS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 25 (03) :220-252
[25]   Multiscale finite-difference-diffusion Monte-Carlo method for simulating dendritic solidification [J].
Plapp, M ;
Karma, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 165 (02) :592-619
[26]  
Saad Y., 1996, Iterative Methods for Sparse Linear Systems
[27]   Computation of three dimensional dendrites with finite elements [J].
Schmidt, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) :293-312
[28]  
SETHIAN J. A., 1999, LEVEL SET METHODS FA
[29]   A fast marching level set method for monotonically advancing fronts [J].
Sethian, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1591-1595
[30]   CRYSTAL-GROWTH AND DENDRITIC SOLIDIFICATION [J].
SETHIAN, JA ;
STRAIN, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (02) :231-253