A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem

被引:193
作者
Gibou, F
Fedkiw, R
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jcp.2004.07.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we first describe a fourth order accurate finite difference discretization for both the Laplace equation and the heat equation with Dirichlet boundary conditions on irregular domains. In the case of the heat equation we use an implicit discretization in time to avoid the stringent time step restrictions associated with requirements for explicit schemes. We then turn our focus to the Stefan problem and construct a third order accurate method that also includes an implicit time discretization. Multidimensional computational results are presented to demonstrate the order accuracy of these numerical methods. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:577 / 601
页数:25
相关论文
共 35 条
[1]  
[Anonymous], 1993, MATH COMPUT, DOI DOI 10.2307/2153266
[2]   A partial differential equation approach to multidimensional extrapolation [J].
Aslam, TD .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (01) :349-355
[3]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[5]   Some improvements of the fast marching method [J].
Chopp, DL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (01) :230-244
[6]   CURVATURE AND SOLIDIFICATION [J].
CHORIN, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 57 (03) :472-490
[7]  
Fedkiw RP, 1999, J COMPUT PHYS, V152, P457, DOI 10.1006/jcph.1999.6136
[8]   A parallel 3D dendritic growth simulator using the phase-field method [J].
George, WL ;
Warren, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 177 (02) :264-283
[9]   A level set approach for the numerical simulation of dendritic growth [J].
Gibou, F ;
Fedkiw, R ;
Caflisch, R ;
Osher, S .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :183-199
[10]   A second-order-accurate symmetric discretization of the Poisson equation on irregular domains [J].
Gibou, F ;
Fedkiw, RP ;
Cheng, LT ;
Kang, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (01) :205-227