The relative viscosity of NaNO3 and NaNO2 aqueous solutions

被引:10
|
作者
Reynolds, Jacob G. [1 ]
Mauss, Billie M. [2 ]
Daniel, Richard C. [3 ]
机构
[1] Washington River Protect Solut LLC, Richland, WA 99352 USA
[2] US DOE, Off River Protect, Richland, WA 99352 USA
[3] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
Sodium nitrate; Sodium nitrite; Viscosity; Hanford; Mode coupling; MIXED ELECTROLYTE-SOLUTIONS; HYDRATION STRUCTURE; MOLECULAR-DYNAMICS; NITRITE SOLUTIONS; SODIUM-NITRATE; LIQUID WATER; MODEL; DENSITY; IONS; 25-DEGREES-C;
D O I
10.1016/j.molliq.2018.05.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO2 and NaNO3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO2 and NaNO3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO2 solutions was consistently larger than NaNO3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms of quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. These hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution. Published by Elsevier B.V.
引用
收藏
页码:110 / 114
页数:5
相关论文
共 50 条
  • [1] DECOMPOSITION OF NANO3 AND NANO2 SOLUTIONS
    KRAMER, CM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (03) : C161 - C161
  • [2] PULSE-RADIOLYSIS STUDY OF NANO2 AND NANO3 SOLUTIONS
    BROSZKIEWICZ, RK
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES CHIMIQUES, 1976, 24 (03): : 221 - 229
  • [3] LINEAR COMPRESSIBILITIES OF NANO2 AND NANO3
    HAZEN, RM
    FINGER, LW
    JOURNAL OF APPLIED PHYSICS, 1979, 50 (11) : 6826 - 6828
  • [4] EVAPORATION OF NANO3, KNO3, AND NANO2
    KRAMER, CM
    MUNIR, ZA
    STERN, KH
    HIGH TEMPERATURE SCIENCE, 1983, 16 (04): : 257 - 267
  • [5] A sulfate and darapskite solubility model with Pitzer interaction coefficients for aqueous solutions containing NaNO2, NaNO3, and NaOH
    Reynolds, Jacob G.
    Carter, Robert
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2016, 101 : 380 - 386
  • [6] Dielectric Properties of NaNO2 and NaNO3 Confined in Porous Glass
    Kinka, Martynas
    Banys, Juras
    Naberezhnov, Alexandr
    FERROELECTRICS, 2009, 390 : 160 - 167
  • [7] GRUNEISEN PARAMETERS AROUND PHASE TRANSITIONS IN NANO2 AND NANO3
    WEGDAM, GH
    VANDEREL.J
    SOLID STATE COMMUNICATIONS, 1971, 9 (21) : 1867 - &
  • [8] DENSITY OF MOLTEN NANO2, NANO3, KNO3, AND THEIR EUTECTIC
    DIBIROV, MA
    BOCHKOV, MM
    LEVINA, LN
    MOZGOVOI, AG
    INORGANIC MATERIALS, 1992, 28 (04) : 708 - 710
  • [9] Thermodynamic performance of the NaNO3–NaCl–NaNO2 ternary system
    Qiang Peng
    Xiaoxi Yang
    Jing Ding
    Xiaolan Wei
    Jianping Yang
    Journal of Thermal Analysis and Calorimetry, 2014, 115 : 1753 - 1758
  • [10] Calorimetric investigations of NaNO3 and NaNO2 embedded into porous glasses
    Rysiakiewicz-Pasek, E.
    Komar, J.
    Cizman, A.
    Poprawski, R.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (11-17) : 661 - 663