Changes in Flood Regime of the Upper Yangtze River

被引:9
作者
Zhang, Yu [1 ]
Fang, Guohua [1 ]
Tang, Zhengyang [2 ,3 ]
Wen, Xin [1 ]
Zhang, Hairong [2 ,3 ]
Ding, Ziyu [1 ]
Li, Xin [1 ]
Bian, Xinsheng [4 ]
Hu, Zengyun [5 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing, Peoples R China
[2] China Yangtze Power Co Ltd, Dept Water Resources Management, Yichang, Peoples R China
[3] Hubei Key Lab Intelligent Yangtze & Hydroelect Sc, Yichang, Peoples R China
[4] Eastern Route South To North Water Divers Project, Nanjing, Peoples R China
[5] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
flood regime; evaluation indicators; temporal trend; change point; periodicity; the upper Yangtze River; ASIAN SUMMER MONSOON; CLIMATE-CHANGE; LARGE-SCALE; PRECIPITATION; TRENDS; RAINFALL; BASIN; DECOMPOSITION; CHINA; WATER;
D O I
10.3389/feart.2021.650882
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
River flooding affects more people worldwide than other natural hazards. Thus, analysis of the changes in flood regime caused by global warming and increasing anthropogenic activities will help us make adaptive plans for future flood management. The nonstationary flood behavior in the upper Yangtze River was examined comprehensively in terms of trend, change point, and periodicity with co-usage of different methods. Results show that there are decreasing tendencies in the corresponding series of annual maximum flood peak flow and flood volume in four out of six control stations, except Pingshan and Wulong stations in the Jinsha River and the Wu River, respectively, and the flood peak occurrence time appears earlier mostly. The uniformity of flood process increases in four main tributaries, while it decreases in mainstream of the Yangtze River (Yichang and Pingshan stations). The rates of both rising limb and recession limb of all the typical flood process flowing through the six stations were analyzed. 77.8% of the rates of rising limb decrease, while 61.1% of the rates of recession limb increase, which is almost consistent with the variation reflected by the uniformity. The change points of most evaluation indicators happened in 1970s-1990s. The first main periodicity of evaluation indicators in Yichang is about 45 years, while that of other stations is about 20 years. Invalidity of stationarity in the flood series can be attributed to the intensified construction on major water conservancy projects, changes of underlying surface, and influences of climatic variables. The contributions of both climatic control and the Three Gorges Dam (TGD) to the variation of the annual flood peak in Yichang station were further quantitatively evaluated, which has verified that the construction of the TGD has played a positive role in peak-flood clipping.
引用
收藏
页数:13
相关论文
共 57 条
[21]   A MULTICOMPONENT DECOMPOSITION OF SPATIAL RAINFALL FIELDS .1. SEGREGATION OF LARGE-SCALE AND SMALL-SCALE FEATURES USING WAVELET TRANSFORMS [J].
KUMAR, P ;
FOUFOULA-GEORGIOU, E .
WATER RESOURCES RESEARCH, 1993, 29 (08) :2515-2532
[22]  
Lane Max, 1991, Child of All Nations, DOI DOI 10.1002/9781118445112.STAT07809
[23]   Climatic control of upper Yangtze River flood hazard diminished by reservoir groups [J].
Li, He ;
Liu, Pan ;
Guo, Shenglian ;
Cheng, Lei ;
Yin, Jiabo .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (12)
[24]  
Li Shaofei, 2012, Engineering Journal of Wuhan University, V45, P166
[25]  
Luo C.Z., 1996, CATHAY BOOKSHOP, DOI [10.1142/9789814447195_0001, DOI 10.1142/9789814447195_0001]
[26]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[27]   NONPARAMETRIC TESTS AGAINST TREND [J].
Mann, Henry B. .
ECONOMETRICA, 1945, 13 (03) :245-259
[28]   Climate change - Stationarity is dead: Whither water management? [J].
Milly, P. C. D. ;
Betancourt, Julio ;
Falkenmark, Malin ;
Hirsch, Robert M. ;
Kundzewicz, Zbigniew W. ;
Lettenmaier, Dennis P. ;
Stouffer, Ronald J. .
SCIENCE, 2008, 319 (5863) :573-574
[29]  
Moberg A, 2006, J GEOPHYS RES-ATMOS, V111, DOI 10.1029/2006JD007103,2006
[30]   Climatic control of Mississippi River flood hazard amplified by river engineering [J].
Munoz, Samuel E. ;
Giosan, Liviu ;
Therrell, Matthew D. ;
Remo, Jonathan W. F. ;
Shen, Zhixiong ;
Sullivan, Richard M. ;
Wiman, Charlotte ;
O'Donnell, Michelle ;
Donnelly, Jeffrey P. .
NATURE, 2018, 556 (7699) :95-+