UNIQUENESS FOR INVERSE PROBLEM OF DETERMINING FRACTIONAL ORDERS FOR TIME-FRACTIONAL ADVECTION-DIFFUSION EQUATIONS

被引:5
作者
Yamamoto, Masahiro [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Acad Romanian Scientists, Ilfov 3, Bucharest, Romania
[3] Accademia Peloritana Pericolanti, Piazza S Pugliatti 1, I-98122 Messina, Italy
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Fractional advection-diffusion equation; uniqueness; fractional order; generalized eigenspace; solution representation; RANDOM-WALKS;
D O I
10.3934/mcrf.2022017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial boundary value problems of time-fractional advection-diffusion equations with the zero Dirichlet boundary value partial derivative(alpha)(t) u(x,t) = -Au(x, t), where -A = Sigma(d)(i, j=1) partial derivative(i)(a(ij)(x)partial derivative(j)) + Sigma(d)(j=1) b(j)(x)partial derivative(j) + c(x). We establish the uniqueness for an inverse problem of determining an order alpha of fractional derivatives by data u(x(0), t) for 0 < t < T at one point x(0) in a spatial domain Omega. The uniqueness holds even under assumption that Omega and A are unknown, provided that the initial value does not change signs and is not identically zero. The proof is based on the eigenfunction expansions of finitely dimensional approximating solutions, a decay estimate and the asymptotic expansions of the Mittag-Leffler functions for large time.
引用
收藏
页码:833 / 851
页数:19
相关论文
共 32 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems
[3]   Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation [J].
Alimov, Shavkat ;
Ashurov, Ravshan .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (05) :651-658
[4]  
[Anonymous], 2013, J. Math-for-Ind
[5]   DETERMINATION OF THE ORDER OF FRACTIONAL DERIVATIVE FOR SUBDIFFUSION EQUATIONS [J].
Ashurov, Ravshan ;
Umarov, Sabir .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) :1647-1662
[6]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[7]  
Gilbarg D., 2015, ELLIPTIC PARTIAL DIF, V224
[8]   TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES [J].
Gorenflo, Rudolf ;
Luchko, Yuri ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :799-820
[9]   Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements [J].
Janno, Jaan ;
Kinash, Nataliia .
INVERSE PROBLEMS, 2018, 34 (02)
[10]  
Janno J, 2016, ELECTRON J DIFFER EQ