Approximate analytical solutions and mean energies of stationary Schrodinger equation for general molecular potential

被引:7
|
作者
Eyube, E. S. [1 ]
Rawen, B. O. [2 ]
Ibrahim, N. [3 ]
机构
[1] Modibbo Adama Univ Technol, Sch Phys Sci, Dept Phys, PMB 2076, Yola, Adamawa State, Nigeria
[2] Abubakar Tafawa Balewa Univ ATBU, Directorate Basic & Remedial Studies, PMB 750001, Bauchi, Bauchi State, Nigeria
[3] Fac Sci, Dept Phys, PMB 1069, Maiduguri, Borno State, Nigeria
关键词
general molecular potential; Schrodinger equation; improved quantization rule; DIATOMIC-MOLECULES; STATE SOLUTIONS; OSCILLATOR; SPECTRUM;
D O I
10.1088/1674-1056/abe371
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Schrodinger equation is solved with general molecular potential via the improved quantization rule. Expression for bound state energy eigenvalues, radial eigenfunctions, mean kinetic energy, and potential energy are obtained in compact form. In modeling the centrifugal term of the effective potential, a Pekeris-like approximation scheme is applied. Also, we use the Hellmann-Feynman theorem to derive the relation for expectation values. Bound state energy eigenvalues, wave functions and meanenergies of Woods-Saxon potential, Morse potential, Mobius squared and Tietz-Hua oscillators are deduced from the general molecular potential. In addition, we use our equations to compute the bound state energy eigenvalues and expectation values for four diatomic molecules viz. H-2, CO, HF, and O-2. Results obtained are in perfect agreement with the data available from the literature for the potentials and molecules. Studies also show that as the vibrational quantum number increases, the mean kinetic energy for the system in a Tietz-Hua potential increases slowly to a threshold value and then decreases. But in a Morse potential, the mean kinetic energy increases linearly with vibrational quantum number increasing.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Approximate Analytical Solutions of the Klein-Gordon Equation with Generalized Morse Potential
    Ikot, A. N.
    Okorie, U. S.
    Rampho, G. J.
    Amadi, P. O.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 42 (01)
  • [22] Evaluation of the bound state energies of some diatomic molecules from the approximate solutions of the Schrodinger equation with Eckart plus inversely quadratic Yukawa potential
    Benedict I. Ita
    Hitler Louis
    Emmanuel I. Ubana
    Philemena E. Ekuri
    Chinedu U. Leonard
    Nelson I. Nzeata
    Journal of Molecular Modeling, 2020, 26
  • [23] Evaluation of the bound state energies of some diatomic molecules from the approximate solutions of the Schrodinger equation with Eckart plus inversely quadratic Yukawa potential
    Ita, Benedict I.
    Louis, Hitler
    Ubana, Emmanuel, I
    Ekuri, Philemena E.
    Leonard, Chinedu U.
    Nzeata, Nelson, I
    JOURNAL OF MOLECULAR MODELING, 2020, 26 (12)
  • [24] Approximate analytical solutions of the Klein-Gordon equation for the Hulthen potential with the position-dependent mass
    Arda, Altug
    Sever, Ramazan
    Tezcan, Cevdet
    PHYSICA SCRIPTA, 2009, 79 (01)
  • [25] Exact and approximate solutions to Schrodinger's equation with decatic potentials
    Brandon, David
    Saad, Nasser
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (03): : 279 - 290
  • [26] Approximate solution of Schrodinger equation in D dimensions for inverted generalized hyperbolic potential
    Awoga, Oladunjoye A.
    Ikot, Akpan N.
    PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (03): : 345 - 356
  • [27] Normalized Solutions to the Fractional Schrodinger Equation with Potential
    Zuo, Jiabin
    Liu, Chungen
    Vetro, Calogero
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [28] Exact solutions of Schrodinger equation for the Makarov potential
    Chen, Chang-Yuan
    Liu, Cheng-Lin
    Lu, Fa-Lin
    PHYSICS LETTERS A, 2010, 374 (11-12) : 1346 - 1349
  • [29] Approximate Analytical Solutions of the Perturbed Yukawa Potential with Centrifugal Barrier
    Rajabi, Ali Akbar
    Hamzavi, Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (6-7): : 454 - 460
  • [30] Solutions of Schrodinger equation and thermal properties of generalized trigonometric Poschl-Teller potential
    Edet, C. O.
    Amadi, P. O.
    Okorie, U. S.
    Tas, A.
    Ikot, A. N.
    Rampho, G.
    REVISTA MEXICANA DE FISICA, 2020, 66 (06) : 824 - 839