On σ-supersoluble groups and one generalization of CLT-groups

被引:28
作者
Guo, Wenbin [1 ]
Chi, Zhang [1 ]
Skiba, Alexander N. [2 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
关键词
Finite group; sigma-nilpotent group; sigma-soluble group; sigma-supersoluble group; CLT sigma-group; FINITE-GROUPS; SUBGROUPS;
D O I
10.1016/j.jalgebra.2018.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and sigma = {sigma(i)\i is an element of I} be a partition of the set of all primes P. A chief factor H/K of C is said to sigma-central (in G) if the semidirect product (H/K) (sic) (G/C-G (H/K)) is a sigma(i)-group for some i is an element of I. The group G is said to be sigma-nilpotent if either G = 1 or every chief factor of G is sigma-central. Let Gn(sigma) be the sigma-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with sigma-nilpotent quotient G/N. Then we say that G is sigma-supersoluble if each chief factor of G below Gn(sigma) is cyclic. In this paper we study properties of sigma-supersoluble groups and also consider some applications of such groups in the theory of generalized CLT-groups. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 108
页数:17
相关论文
共 37 条
[1]   On finite groups with σ-subnormal Schmidt subgroups [J].
Al-Sharo, Khaled A. ;
Skiba, Alexander N. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) :4158-4165
[2]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[3]  
[Anonymous], 1968, Finite Groups
[4]   On some classes of supersoluble groups [J].
Ballester-Bolinches, A. ;
Beidleman, J. C. ;
Esteban-Romero, R. .
JOURNAL OF ALGEBRA, 2007, 312 (01) :445-454
[5]  
Ballester-Bolinches A., 2010, De Gruyter Exp. Math., V53
[6]  
Ballester-Bolinches A., 2006, Classes of Finite Groups
[7]   On a problem posed by S. Li and J. Liu [J].
Ballester-Bolinches, Adolfo ;
Qiao, ShouHong .
ARCHIV DER MATHEMATIK, 2014, 102 (02) :109-111
[8]   ON THE LATTICE OF GAMMA-SUBNORMAL SUBGROUPS [J].
BALLESTERBOLINCHES, A ;
DOERK, K ;
PEREZRAMOS, MD .
JOURNAL OF ALGEBRA, 1992, 148 (01) :42-52
[9]   On τσ-quasinormal subgroups of finite groups [J].
Beidleman, James C. ;
Skiba, Alexander N. .
JOURNAL OF GROUP THEORY, 2017, 20 (05) :955-969
[10]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891