A decreasing rearrangement for functions on homogeneous trees

被引:5
作者
Garcia-Domingo, JL [1 ]
Soria, J
机构
[1] Univ VIc, Dept Econ Matemat & Informat, E-08500 Vic, Spain
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08071 Barcelona, Spain
关键词
D O I
10.1016/j.ejc.2004.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new decreasing rearrangement for functions defined on a homogeneous tree, which enjoys very intuitive and natural properties. The idea is to iterate, with respect to a particular ordering, the usual one dimensional rearrangement on each geodesic. After showing the canonicity of this definition and the axioms of symmetrization, we prove our main result: the geometric and analytic definitions, in terms of the "layer cake" formula, agree. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 225
页数:25
相关论文
共 17 条
[1]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[2]   INTEGRAL GEOMETRY ON TREES [J].
BERENSTEIN, CA ;
CASADIO TARABUSI, E ;
COHEN, JM ;
PICARDELLO, MA .
AMERICAN JOURNAL OF MATHEMATICS, 1991, 113 (03) :441-470
[3]   On harmonic functions on trees [J].
Cantón, A ;
Fernández, JL ;
Pestana, D ;
Rodríguez, JM .
POTENTIAL ANALYSIS, 2001, 15 (03) :199-244
[4]  
CARTIER P, 1972, S MATH, V9, P203
[5]   WEIGHTED HARDY AND POINCARE INEQUALITIES ON TREES [J].
EVANS, WD ;
HARRIS, DJ ;
PICK, L .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 :121-136
[6]  
FIGATALAMANCA A, 1991, LECT NOTE SERIES, V162
[7]  
GARCIADOMINGO JL, LORENTZ SPACES DECRE
[8]   A Faber-Krahn-type inequality for regular trees [J].
Leydold, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (02) :364-378
[9]  
Lieb E. H., 2001, Graduate Studies in Mathematics, V14
[10]  
Lorentz GG., 1951, Pacific J. Math., V1, P411, DOI [10.2140/pjm.1951.1.411, DOI 10.2140/PJM.1951.1.411]