Electrospun aniline-tetramer-co-polycaprolactone fibers for conductive, biodegradable scaffolds

被引:18
作者
Guex, A. G. [1 ,2 ,3 ,4 ]
Spicer, C. D. [1 ]
Armgarth, A. [1 ]
Gelmi, A. [1 ]
Humphrey, E. J. [2 ]
Terracciano, C. M. [2 ]
Harding, S. E. [2 ]
Stevens, M. M. [1 ]
机构
[1] Imperial Coll London, Inst Biomed Engn, Dept Bioengn, Dept Mat, Prince Consort Rd, London SW7 2AZ, England
[2] Imperial Coll London, Natl Heart & Lung Inst, Du Cane Rd, London W12 0NN, England
[3] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Biointerfaces, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[4] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Biomimet Membranes & Text, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
BIOMEDICAL APPLICATIONS; TISSUE; POLYMERS; HYDROGELS; BIOMATERIALS; COPOLYMERS; OLIGOMERS;
D O I
10.1557/mrc.2017.45
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conjugated polymers have been proposed as promising materials for scaffolds in tissue engineering applications. However, the restricted processability and biodegradability of conjugated polymers limit their use for biomedical applications. Here we synthesized a block-co-polymer of aniline tetramer and PCL (AT-PCL), and processed it into fibrous non-woven scaffolds by electrospinning. We showed that fibronectin (Fn) adhesion was dependent on the AT-PCL oxidative state, with a reduced Fn unfolding length on doped membranes. Furthermore, we demonstrated the cytocompatibility and potential of these membranes to support the growth and osteogenic differentiation of MC3T3-E1 cells over 21 days.
引用
收藏
页码:375 / 382
页数:8
相关论文
共 31 条
[1]  
Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
[2]   Conductive polymers: Towards a smart biomaterial for tissue engineering [J].
Balint, Richard ;
Cassidy, Nigel J. ;
Cartmell, Sarah H. .
ACTA BIOMATERIALIA, 2014, 10 (06) :2341-2353
[3]   Review paper: Progress in the Field of Conducting Polymers for Tissue Engineering Applications [J].
Bendrea, Anca-Dana ;
Cianga, Luminita ;
Cianga, Ioan .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2011, 26 (01) :3-84
[4]   Recent advances in bone tissue engineering scaffolds [J].
Bose, Susmita ;
Roy, Mangal ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2012, 30 (10) :546-554
[5]   Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering [J].
Campagnolo, Paola ;
Gormley, Adam J. ;
Chow, Lesley W. ;
Guex, Anne Geraldine ;
Parmar, Paresh A. ;
Puetzer, Jennifer L. ;
Steele, Joseph A. M. ;
Breant, Alexandre ;
Madeddu, Paolo ;
Stevens, Molly M. .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (23) :3046-3055
[6]   Biomedical surface science: Foundations to frontiers [J].
Castner, DG ;
Ratner, BD .
SURFACE SCIENCE, 2002, 500 (1-3) :28-60
[7]   In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering [J].
Cui, Haitao ;
Liu, Yadong ;
Cheng, Yilong ;
Zhang, Zhe ;
Zhang, Peibiao ;
Chen, Xuesi ;
Wei, Yen .
BIOMACROMOLECULES, 2014, 15 (04) :1115-1123
[8]   PLA-PEG-PLA and Its Electroactive Tetraaniline Copolymer as Multi-interactive Injectable Hydrogels for Tissue Engineering [J].
Cui, Haitao ;
Shao, Jun ;
Wang, Yu ;
Zhang, Peibiao ;
Chen, Xuesi ;
Wei, Yen .
BIOMACROMOLECULES, 2013, 14 (06) :1904-1912
[9]   Synthesis of Biodegradable and Electroactive Tetraaniline Grafted Poly(ester amide) Copolymers for Bone Tissue Engineering [J].
Cui, Haitao ;
Liu, Yadong ;
Deng, Mingxiao ;
Pang, Xuan ;
Zhang, Peibiao ;
Wang, Xianhong ;
Chen, Xuesi ;
Wei, Yen .
BIOMACROMOLECULES, 2012, 13 (09) :2881-2889
[10]   Resolving Sub-Molecular Binding and Electrical Switching Mechanisms of Single Proteins at Electroactive Conducting Polymers [J].
Gelmi, A. ;
Higgins, M. J. ;
Wallace, G. G. .
SMALL, 2013, 9 (03) :393-401